Existence and Concentration of Solutions for a Nonlinear Choquard Equation

In this paper, we consider the nonlinear Choquard equation - Δ u + ( 1 + μ g ( x ) ) u = ( K α ( x ) ∗ | u | p ) | u | p - 2 u , x ∈ R N , where N ≥ 3 , α ∈ ( 0 , N ) , p ∈ ( N + α N , N + α N - 2 ) , μ > 0 is a parameter, K α ( x ) is the Riesz potential and g ( x ) is a nonnegative continuous p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2015-07, Vol.12 (3), p.839-850
1. Verfasser: Lü, Dengfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the nonlinear Choquard equation - Δ u + ( 1 + μ g ( x ) ) u = ( K α ( x ) ∗ | u | p ) | u | p - 2 u , x ∈ R N , where N ≥ 3 , α ∈ ( 0 , N ) , p ∈ ( N + α N , N + α N - 2 ) , μ > 0 is a parameter, K α ( x ) is the Riesz potential and g ( x ) is a nonnegative continuous potential. Under some assumptions on g ( x ), we obtain the existence of ground state solutions and concentration results by using the critical point theory.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-014-0428-8