Existence and Concentration of Solutions for a Nonlinear Choquard Equation
In this paper, we consider the nonlinear Choquard equation - Δ u + ( 1 + μ g ( x ) ) u = ( K α ( x ) ∗ | u | p ) | u | p - 2 u , x ∈ R N , where N ≥ 3 , α ∈ ( 0 , N ) , p ∈ ( N + α N , N + α N - 2 ) , μ > 0 is a parameter, K α ( x ) is the Riesz potential and g ( x ) is a nonnegative continuous p...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2015-07, Vol.12 (3), p.839-850 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the nonlinear Choquard equation
-
Δ
u
+
(
1
+
μ
g
(
x
)
)
u
=
(
K
α
(
x
)
∗
|
u
|
p
)
|
u
|
p
-
2
u
,
x
∈
R
N
,
where
N
≥
3
,
α
∈
(
0
,
N
)
,
p
∈
(
N
+
α
N
,
N
+
α
N
-
2
)
,
μ
>
0
is a parameter,
K
α
(
x
)
is the Riesz potential and
g
(
x
) is a nonnegative continuous potential. Under some assumptions on
g
(
x
), we obtain the existence of ground state solutions and concentration results by using the critical point theory. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-014-0428-8 |