Modules whose Endomorphism Rings have Finite Triangulating Dimension and Some Applications

By defining orthogonal decomposition for modules, we prove that an R -module M has only finitely many fully invariant direct summands if and only if End R ( M ) has triangulating dimension is left orthogonal}. Denoting n =  τ dim( M R ), the triangulating dimension of M R , it is shown that τ dim( M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2013-08, Vol.10 (3), p.1171-1187
Hauptverfasser: Haghany, Ahmad, Gurabi, Mehdi, Vedadi, Mohammad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By defining orthogonal decomposition for modules, we prove that an R -module M has only finitely many fully invariant direct summands if and only if End R ( M ) has triangulating dimension is left orthogonal}. Denoting n =  τ dim( M R ), the triangulating dimension of M R , it is shown that τ dim( M R ) is Morita invariant, and when R is an Artinian principal ideal ring, τ dim( M R ) is the number of socle components of M R . If R is commutative then R is perfect (resp. a finite direct product of domains) if and only if it is semi-Artinian (resp. semiprime extending) with finite triangulating dimension. A recent result of Birkenmeier et al. [4] is generalized into a module setting.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-013-0255-3