Modules whose Endomorphism Rings have Finite Triangulating Dimension and Some Applications
By defining orthogonal decomposition for modules, we prove that an R -module M has only finitely many fully invariant direct summands if and only if End R ( M ) has triangulating dimension is left orthogonal}. Denoting n = τ dim( M R ), the triangulating dimension of M R , it is shown that τ dim( M...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2013-08, Vol.10 (3), p.1171-1187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By defining orthogonal decomposition for modules, we prove that an
R
-module
M
has only finitely many fully invariant direct summands if and only if End
R
(
M
) has triangulating dimension
is left orthogonal}. Denoting
n
=
τ
dim(
M
R
), the triangulating dimension of
M
R
, it is shown that
τ
dim(
M
R
) is Morita invariant, and when
R
is an Artinian principal ideal ring,
τ
dim(
M
R
) is the number of socle components of
M
R
. If
R
is commutative then
R
is perfect (resp. a finite direct product of domains) if and only if it is semi-Artinian (resp. semiprime extending) with finite triangulating dimension. A recent result of Birkenmeier et al. [4] is generalized into a module setting. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-013-0255-3 |