Property (R) under Perturbations
Property ( R ) holds for a bounded linear operator , defined on a complex infinite dimensional Banach space X , if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points λ of the approximate point spectrum for which λ I − T is upper semi-Browde...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2013-02, Vol.10 (1), p.367-382 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Property (
R
) holds for a bounded linear operator
, defined on a complex infinite dimensional Banach space
X
, if the isolated points of the spectrum of
T
which are eigenvalues of finite multiplicity are exactly those points λ of the approximate point spectrum for which λ
I
−
T
is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz, or algebraic perturbations commuting with
T
. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-012-0174-8 |