Noncommutative Galois Extension and Graded q-Differential Algebra

We show that a semi-commutative Galois extension of a unital associative algebra can be endowed with the structure of a graded q -differential algebra. We study the first and higher order noncommutative differential calculus of semi-commutative Galois extension induced by the graded q -differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2016-03, Vol.26 (1), p.1-11
1. Verfasser: Abramov, Viktor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a semi-commutative Galois extension of a unital associative algebra can be endowed with the structure of a graded q -differential algebra. We study the first and higher order noncommutative differential calculus of semi-commutative Galois extension induced by the graded q -differential algebra. As an example we consider the quaternions which can be viewed as the semi-commutative Galois extension of complex numbers.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-015-0599-9