Some Integral Representations and Singular Integral over Plane in Clifford Analysis
In this paper, Cauchy type integral and singular integral over hyper-complex plane ∏ are considered. By using a special Möbius transform, an equivalent relation between H ^ μ class functions over ∏ and H μ class functions over the unit sphere is shown. For H ^ μ class functions over ∏ , we prove the...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2014-12, Vol.24 (4), p.1145-1157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, Cauchy type integral and singular integral over hyper-complex plane
∏
are considered. By using a special Möbius transform, an equivalent relation between
H
^
μ
class functions over
∏
and
H
μ
class functions over the unit sphere is shown. For
H
^
μ
class functions over
∏
, we prove the existence of Cauchy type integral and singular integral over
∏
. Cauchy integral formulas as well as Poisson integral formulas for monogenic functions in upper-half and lower-half space are given respectively. By using Möbius transform again, the relation between the Cauchy type integrals and the singular integrals over
∏
and unit sphere is built. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-014-0498-5 |