Some Integral Representations and Singular Integral over Plane in Clifford Analysis

In this paper, Cauchy type integral and singular integral over hyper-complex plane ∏ are considered. By using a special Möbius transform, an equivalent relation between H ^ μ class functions over ∏ and H μ class functions over the unit sphere is shown. For H ^ μ class functions over ∏ , we prove the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2014-12, Vol.24 (4), p.1145-1157
1. Verfasser: Zhongxiang, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Cauchy type integral and singular integral over hyper-complex plane ∏ are considered. By using a special Möbius transform, an equivalent relation between H ^ μ class functions over ∏ and H μ class functions over the unit sphere is shown. For H ^ μ class functions over ∏ , we prove the existence of Cauchy type integral and singular integral over ∏ . Cauchy integral formulas as well as Poisson integral formulas for monogenic functions in upper-half and lower-half space are given respectively. By using Möbius transform again, the relation between the Cauchy type integrals and the singular integrals over ∏ and unit sphere is built.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-014-0498-5