Operator Identities in q-Deformed Clifford Analysis
In this paper, we define a q -deformation of the Dirac operator as a generalization of the one dimensional q -derivative. This is done in the abstract setting of radial algebra. This leads to a q -Dirac operator in Clifford analysis. The q -integration on , for which the q -Dirac operator satisfies...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2011-12, Vol.21 (4), p.677-696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define a
q
-deformation of the Dirac operator as a generalization of the one dimensional
q
-derivative. This is done in the abstract setting of radial algebra. This leads to a
q
-Dirac operator in Clifford analysis. The
q
-integration on
, for which the
q
-Dirac operator satisfies Stokes’ formula, is defined. The orthogonal
q
-Clifford- Hermite polynomials for this integration are briefly studied. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-011-0281-9 |