Operator Identities in q-Deformed Clifford Analysis

In this paper, we define a q -deformation of the Dirac operator as a generalization of the one dimensional q -derivative. This is done in the abstract setting of radial algebra. This leads to a q -Dirac operator in Clifford analysis. The q -integration on , for which the q -Dirac operator satisfies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2011-12, Vol.21 (4), p.677-696
Hauptverfasser: Coulembier, K., Sommen, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define a q -deformation of the Dirac operator as a generalization of the one dimensional q -derivative. This is done in the abstract setting of radial algebra. This leads to a q -Dirac operator in Clifford analysis. The q -integration on , for which the q -Dirac operator satisfies Stokes’ formula, is defined. The orthogonal q -Clifford- Hermite polynomials for this integration are briefly studied.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-011-0281-9