The entanglement entropy of typical pure states and replica wormholes

A bstract In a 1+1 dimensional QFT on a circle, we consider the von Neumann entanglement entropy of an interval for typical pure states. As a function of the interval size, we expect a Page curve in the entropy. We employ a specific ensemble average of pure states, and show how to write the ensemble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-12, Vol.2021 (12), p.1-30, Article 125
1. Verfasser: Urbach, Erez Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract In a 1+1 dimensional QFT on a circle, we consider the von Neumann entanglement entropy of an interval for typical pure states. As a function of the interval size, we expect a Page curve in the entropy. We employ a specific ensemble average of pure states, and show how to write the ensemble-averaged Rényi entropy as a path integral on a singular replicated geometry. Assuming that the QFT is a conformal field theory with a gravitational dual, we then use the holographic dictionary to obtain the Page curve. For short intervals the thermal saddle is dominant. For large intervals (larger than half of the circle size), the dominant saddle connects the replicas in a non-trivial way using the singular boundary geometry. The result extends the ‘island conjecture’ to a non-evaporating setting.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2021)125