Parameter counting for singular monopoles on ℝ3
A bstract We compute the dimension of the moduli space of gauge-inequivalent solutions to the Bogomolny equation on ℝ 3 with prescribed singularities corresponding to the insertion of a finite number of ’t Hooft defects. We do this by generalizing the methods of C. Callias and E. Weinberg to the cas...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2014-10, Vol.2014 (10), Article 142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We compute the dimension of the moduli space of gauge-inequivalent solutions to the Bogomolny equation on ℝ
3
with prescribed singularities corresponding to the insertion of a finite number of ’t Hooft defects. We do this by generalizing the methods of C. Callias and E. Weinberg to the case of ℝ
3
with a finite set of points removed. For a special class of Cartan-valued backgrounds we go further and construct an explicit basis of ℒ
2
-normalizable zero-modes. Finally we exhibit and study a two-parameter family of spherically symmetric singular monopoles, using the dimension formula to provide a physical interpretation of these configurations. This paper is the first in a series of three on singular monopoles, where we also explore the role they play in the contexts of intersecting D-brane systems and four-dimensional
N
=2 super Yang-Mills theories. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP10(2014)142 |