Parameter counting for singular monopoles on ℝ3

A bstract We compute the dimension of the moduli space of gauge-inequivalent solutions to the Bogomolny equation on ℝ 3 with prescribed singularities corresponding to the insertion of a finite number of ’t Hooft defects. We do this by generalizing the methods of C. Callias and E. Weinberg to the cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2014-10, Vol.2014 (10), Article 142
Hauptverfasser: Moore, Gregory W., Royston, Andrew B., Van den Bleeken, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We compute the dimension of the moduli space of gauge-inequivalent solutions to the Bogomolny equation on ℝ 3 with prescribed singularities corresponding to the insertion of a finite number of ’t Hooft defects. We do this by generalizing the methods of C. Callias and E. Weinberg to the case of ℝ 3 with a finite set of points removed. For a special class of Cartan-valued backgrounds we go further and construct an explicit basis of ℒ 2 -normalizable zero-modes. Finally we exhibit and study a two-parameter family of spherically symmetric singular monopoles, using the dimension formula to provide a physical interpretation of these configurations. This paper is the first in a series of three on singular monopoles, where we also explore the role they play in the contexts of intersecting D-brane systems and four-dimensional N =2 super Yang-Mills theories.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2014)142