All chiral $$ \mathcal{W} $$-algebra extensions of $$ \mathfrak{so}\left(2,3\right)
We show that there are four chiral $$ \mathcal{W} $$ W -algebra extensions of $$ \mathfrak{so}\left(2,3\right) $$ so 2 3 algebra and construct them explicitly. We do this by a simple identification of each of the inequivalent embeddings of a copy of $$ \mathfrak{sl}\left(2,\mathbb{R}\right) $$ sl 2...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2024-08, Vol.2024 (8), Article 137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there are four chiral $$ \mathcal{W} $$ W -algebra extensions of $$ \mathfrak{so}\left(2,3\right) $$ so 2 3 algebra and construct them explicitly. We do this by a simple identification of each of the inequivalent embeddings of a copy of $$ \mathfrak{sl}\left(2,\mathbb{R}\right) $$ sl 2 ℝ in the $$ \mathfrak{so}\left(2,3\right) $$ so 2 3 algebra and the maximal subalgebra $$ \mathfrak{h} $$ h that commutes with it. Then using the standard 2d chiral CFT techniques we find the corresponding $$ \mathcal{W} $$ W -algebra extensions. Two of the four resultant $$ \mathcal{W} $$ W -algebras are new, one of which may be thought of as the conformal $$ {\mathfrak{bms}}_3 $$ bms 3 algebra valid for finite values of its central charge. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP08(2024)137 |