Ω-deformation and quantization

A bstract We formulate a deformation of Rozansky-Witten theory analogous to the Ω-deformation. It is applicable when the target space X is hyperkähler and the spacetime is of the form ℝ×Σ, with Σ being a Riemann surface. In the case that Σ is a disk, the Ω-deformed Rozansky-Witten theory quantizes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2014-08, Vol.2014 (8), Article 112
1. Verfasser: Yagi, Junya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We formulate a deformation of Rozansky-Witten theory analogous to the Ω-deformation. It is applicable when the target space X is hyperkähler and the spacetime is of the form ℝ×Σ, with Σ being a Riemann surface. In the case that Σ is a disk, the Ω-deformed Rozansky-Witten theory quantizes a symplectic submanifold of X , thereby providing a new perspective on quantization. As applications, we elucidate two phenomena in four- dimensional gauge theory from this point of view. One is a correspondence between the Ω-deformation and quantization of integrable systems. The other concerns supersymmetric loop operators and quantization of the algebra of holomorphic functions on a hyperkähler manifold.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP08(2014)112