Contour integrals and the modular $$ \mathcal{S} $$-matrix

We investigate a conjecture to describe the characters of large families of RCFT’s in terms of contour integrals of Feigin-Fuchs type. We provide a simple algorithm to determine the modular $$ \mathcal{S} $$ S -matrix for arbitrary numbers of characters as a sum over paths. Thereafter we focus on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-07, Vol.2020 (7), Article 45
Hauptverfasser: Mukhi, Sunil, Poddar, Rahul, Singh, Palash
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a conjecture to describe the characters of large families of RCFT’s in terms of contour integrals of Feigin-Fuchs type. We provide a simple algorithm to determine the modular $$ \mathcal{S} $$ S -matrix for arbitrary numbers of characters as a sum over paths. Thereafter we focus on the case of 2, 3 and 4 characters, where agreement between the critical exponents of the integrals and the characters implies that the conjecture is true. In these cases, we compute the modular S -matrix explicitly, verify that it agrees with expectations for known theories, and use it to compute degeneracies and multiplicities of primaries. We verify that our algorithm reproduces the correct $$ \mathcal{S} $$ S -matrix for SU (2) k for all k ≤ 18 which provides additional evidence for the original conjecture. On the way we note that the Verlinde formula provides interesting constraints on the critical exponents of RCFT in this context.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2020)045