T\overline{T} $$ Deformation of stress-tensor correlators from random geometry
We study stress-tensor correlators in the $$ T\overline{T} $$ T T ¯ -deformed conformal field theories in two dimensions. Using the random geometry approach to the $$ T\overline{T} $$ T T ¯ deformation, we develop a geometrical method to compute stress-tensor correlators. More specifically, we deriv...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2021-04, Vol.2021 (4), Article 270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study stress-tensor correlators in the
$$ T\overline{T} $$
T
T
¯
-deformed conformal field theories in two dimensions. Using the random geometry approach to the
$$ T\overline{T} $$
T
T
¯
deformation, we develop a geometrical method to compute stress-tensor correlators. More specifically, we derive the
$$ T\overline{T} $$
T
T
¯
deformation to the Polyakov-Liouville conformal anomaly action and calculate three and four-point correlators to the first-order in the
$$ T\overline{T} $$
T
T
¯
deformation from the deformed Polyakov-Liouville action. The results are checked against the standard conformal perturbation theory computation and we further check consistency with the
$$ T\overline{T} $$
T
T
¯
-deformed operator product expansions of the stress tensor. A salient feature of the
$$ T\overline{T} $$
T
T
¯
-deformed stress-tensor correlators is a logarithmic correction that is absent in two and three-point functions but starts appearing in a four-point function. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP04(2021)270 |