T\overline{T} $$ Deformation of stress-tensor correlators from random geometry

We study stress-tensor correlators in the $$ T\overline{T} $$ T T ¯ -deformed conformal field theories in two dimensions. Using the random geometry approach to the $$ T\overline{T} $$ T T ¯ deformation, we develop a geometrical method to compute stress-tensor correlators. More specifically, we deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-04, Vol.2021 (4), Article 270
Hauptverfasser: Hirano, Shinji, Nakajima, Tatsuki, Shigemori, Masaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study stress-tensor correlators in the $$ T\overline{T} $$ T T ¯ -deformed conformal field theories in two dimensions. Using the random geometry approach to the $$ T\overline{T} $$ T T ¯ deformation, we develop a geometrical method to compute stress-tensor correlators. More specifically, we derive the $$ T\overline{T} $$ T T ¯ deformation to the Polyakov-Liouville conformal anomaly action and calculate three and four-point correlators to the first-order in the $$ T\overline{T} $$ T T ¯ deformation from the deformed Polyakov-Liouville action. The results are checked against the standard conformal perturbation theory computation and we further check consistency with the $$ T\overline{T} $$ T T ¯ -deformed operator product expansions of the stress tensor. A salient feature of the $$ T\overline{T} $$ T T ¯ -deformed stress-tensor correlators is a logarithmic correction that is absent in two and three-point functions but starts appearing in a four-point function.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2021)270