Deconfining $$ \mathcal{N} $$ = 2 SCFTs or the art of brane bending
We introduce a systematic approach to constructing $$ \mathcal{N} $$ N = 1 Lagrangians for a class of interacting $$ \mathcal{N} $$ N = 2 SCFTs. We analyse in detail the simplest case of the construction, arising from placing branes at an orientifolded ℂ 2 / ℤ 2 singularity. In this way we obtain La...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2022-03, Vol.2022 (3), Article 140 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a systematic approach to constructing
$$ \mathcal{N} $$
N
= 1 Lagrangians for a class of interacting
$$ \mathcal{N} $$
N
= 2 SCFTs. We analyse in detail the simplest case of the construction, arising from placing branes at an orientifolded ℂ
2
/
ℤ
2
singularity. In this way we obtain Lagrangian descriptions for all the
R
2
,k
theories. The rank one theories in this class are the
E
6
Minahan-Nemeschansky theory and the
C
2
× U(1) Argyres-Wittig theory. The Lagrangians that arise from our brane construction manifestly exhibit either the entire expected flavour symmetry group of the SCFT (for even
k
) or a full-rank subgroup thereof (for odd
k
), so we can compute the full superconformal index of the
$$ \mathcal{N} $$
N
= 2 SCFTs, and also systematically identify the Higgsings associated to partial closing of punctures. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP03(2022)140 |