In-Flight Attitude Perturbation Estimation for Earth-Orbiting Spacecraft
This paper presents four innovative techniques, three Kalman-based and one observer-based, to estimate environmental perturbation torques acting on an Earth-orbiting spacecraft. The Kalman-based techniques all use simple generic models for the state dependence of the perturbation, and for estimating...
Gespeichert in:
Veröffentlicht in: | The Journal of the astronautical sciences 2009-07, Vol.57 (3), p.633-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents four innovative techniques, three Kalman-based and one observer-based, to estimate environmental perturbation torques acting on an Earth-orbiting spacecraft. The Kalman-based techniques all use simple generic models for the state dependence of the perturbation, and for estimating the unknown coefficients included in these generic mathematical formulations. The observer-based technique is developed with the nonlinear disturbance observer theory. The proposed strategies are validated in numerical simulations and are traded-off in terms of estimation accuracy and computational load requirement. Then, the most suitable estimation technique is combined with a batch least square filter algorithm to yield a perturbation estimation system with low computational load, which can be implemented onboard a spacecraft. Finally, the proposed estimation strategy is applied to a realistic gyroless Earth-orbiting spacecraft mission: the European Space Agency’s Project for Onboard Autonomy (PROBA)-2 mission. Ultimately, the selected estimation strategy will be implemented onboard the PROBA-2 spacecraft for in-flight validation. All strategies proposed in this article are general and are applicable to any Earth-orbiting spacecraft. |
---|---|
ISSN: | 0021-9142 2195-0571 |
DOI: | 10.1007/BF03321520 |