Characterization of methylated nanoscale MCM-41 material

In this study, nanoscale MCM-41 molecular sieve was prepared under a basic condition by a hydrothermal method using cetyltrimethylammonium bromide as a template and tetraethyl orthosilicate as a silica source. Methylated nanoscale MCM-41 molecular sieve was prepared from the nanoscale MCM-41 by post...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Iranian Chemical Society 2011-02, Vol.8 (Suppl 1), p.S1-S8
Hauptverfasser: Li, X.-D., Zhai, Q.-Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, nanoscale MCM-41 molecular sieve was prepared under a basic condition by a hydrothermal method using cetyltrimethylammonium bromide as a template and tetraethyl orthosilicate as a silica source. Methylated nanoscale MCM-41 molecular sieve was prepared from the nanoscale MCM-41 by post-synthesis method using trimethylchlorosilane (TMCS) as coupling agent. The product was characterized by means of element analysis, powder X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, scanning electron microscopic (SEM), thermogravimetry-differential thermal analysis (TG-DTA). Powder XRD showed that the framework of the molecular sieve was well retained and the degree of ordering of the methylated MCM-41 decreases. IR spectra and the low-temperature nitrogen adsorption-desorption technique suggested that methyl was successfully grafted to the inner surface of the methylated MCM-41 and the mesoporous channels of the methylated MCM-41 were still maintained. Scanning electron microscopic results showed that the average size of the methylated MCM-41 prepared was 112 nm. Differential thermal analysis showed that the prepared material has preferable thermal stability and the methylated MCM-41 can be stable at 903 °C.
ISSN:1735-207X
1735-2428
DOI:10.1007/BF03254276