Characterization of methylated nanoscale MCM-41 material
In this study, nanoscale MCM-41 molecular sieve was prepared under a basic condition by a hydrothermal method using cetyltrimethylammonium bromide as a template and tetraethyl orthosilicate as a silica source. Methylated nanoscale MCM-41 molecular sieve was prepared from the nanoscale MCM-41 by post...
Gespeichert in:
Veröffentlicht in: | Journal of the Iranian Chemical Society 2011-02, Vol.8 (Suppl 1), p.S1-S8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, nanoscale MCM-41 molecular sieve was prepared under a basic condition by a hydrothermal method using cetyltrimethylammonium bromide as a template and tetraethyl orthosilicate as a silica source. Methylated nanoscale MCM-41 molecular sieve was prepared from the nanoscale MCM-41 by post-synthesis method using trimethylchlorosilane (TMCS) as coupling agent. The product was characterized by means of element analysis, powder X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, scanning electron microscopic (SEM), thermogravimetry-differential thermal analysis (TG-DTA). Powder XRD showed that the framework of the molecular sieve was well retained and the degree of ordering of the methylated MCM-41 decreases. IR spectra and the low-temperature nitrogen adsorption-desorption technique suggested that methyl was successfully grafted to the inner surface of the methylated MCM-41 and the mesoporous channels of the methylated MCM-41 were still maintained. Scanning electron microscopic results showed that the average size of the methylated MCM-41 prepared was 112 nm. Differential thermal analysis showed that the prepared material has preferable thermal stability and the methylated MCM-41 can be stable at 903 °C. |
---|---|
ISSN: | 1735-207X 1735-2428 |
DOI: | 10.1007/BF03254276 |