Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations

<正> In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 1996, Vol.12 (1), p.18-32
1. Verfasser: Chaojiang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 18
container_title Acta mathematica Sinica. English series
container_volume 12
creator Chaojiang, Xu
description <正> In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), Bj, C∈C∞(■×R) and (Ai,j(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the "non-isotropic" Hlder space associatedwith the system of vector fields X.
doi_str_mv 10.1007/bf02109387
format Article
fullrecord <record><control><sourceid>crossref_chong</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF02109387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665677783199601002</cqvip_id><sourcerecordid>10_1007_BF02109387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-74be7e92c85e21e7f005ff5645bc8a26f44b9a5166ccc9edcb2270218ef040023</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVw4Qt8BgXWTmzHRygtVKpUEHCObHfdGqVJaycH_p5UFE6zIz2NZoeQawZ3DEDdWw-cgc5LdUJGrMh1piRTp8e7FEyek4uUvgCE0CBHZP4UYnCbGjv6Gltb4zZR30babZC-9SaFOjRoIn1H1zYruowrHExvsa7DrguOTve96ULbpEty5k2d8OqoY_I5m35MXrLF8nk-eVhkjgvoMlVYVKi5KwVyhsoPVbwXshDWlYZLXxRWm6GodM5pXDnLuRqeKtFDAcDzMbn5zXWxTSmir3YxbE38rhhUhxGqx9nfCAN8e4Q3bbPeh2b9T0sppFKqzJnWEtgh-gfOB1xb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Chaojiang, Xu</creator><creatorcontrib>Chaojiang, Xu</creatorcontrib><description>&amp;lt;正&amp;gt; In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), Bj, C∈C∞(■×R) and (Ai,j(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the &amp;quot;non-isotropic&amp;quot; Hlder space associatedwith the system of vector fields X.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/bf02109387</identifier><language>eng</language><subject>equation;Dirichlet ; estimate ; priori ; problem;A ; Sub-elliptic</subject><ispartof>Acta mathematica Sinica. English series, 1996, Vol.12 (1), p.18-32</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-74be7e92c85e21e7f005ff5645bc8a26f44b9a5166ccc9edcb2270218ef040023</citedby><cites>FETCH-LOGICAL-c250t-74be7e92c85e21e7f005ff5645bc8a26f44b9a5166ccc9edcb2270218ef040023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaojiang, Xu</creatorcontrib><title>Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta Mathematica Sinica</addtitle><description>&amp;lt;正&amp;gt; In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), Bj, C∈C∞(■×R) and (Ai,j(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the &amp;quot;non-isotropic&amp;quot; Hlder space associatedwith the system of vector fields X.</description><subject>equation;Dirichlet</subject><subject>estimate</subject><subject>priori</subject><subject>problem;A</subject><subject>Sub-elliptic</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqVw4Qt8BgXWTmzHRygtVKpUEHCObHfdGqVJaycH_p5UFE6zIz2NZoeQawZ3DEDdWw-cgc5LdUJGrMh1piRTp8e7FEyek4uUvgCE0CBHZP4UYnCbGjv6Gltb4zZR30babZC-9SaFOjRoIn1H1zYruowrHExvsa7DrguOTve96ULbpEty5k2d8OqoY_I5m35MXrLF8nk-eVhkjgvoMlVYVKi5KwVyhsoPVbwXshDWlYZLXxRWm6GodM5pXDnLuRqeKtFDAcDzMbn5zXWxTSmir3YxbE38rhhUhxGqx9nfCAN8e4Q3bbPeh2b9T0sppFKqzJnWEtgh-gfOB1xb</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Chaojiang, Xu</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1996</creationdate><title>Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations</title><author>Chaojiang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-74be7e92c85e21e7f005ff5645bc8a26f44b9a5166ccc9edcb2270218ef040023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>equation;Dirichlet</topic><topic>estimate</topic><topic>priori</topic><topic>problem;A</topic><topic>Sub-elliptic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaojiang, Xu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaojiang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><addtitle>Acta Mathematica Sinica</addtitle><date>1996</date><risdate>1996</risdate><volume>12</volume><issue>1</issue><spage>18</spage><epage>32</epage><pages>18-32</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>&amp;lt;正&amp;gt; In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), Bj, C∈C∞(■×R) and (Ai,j(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the &amp;quot;non-isotropic&amp;quot; Hlder space associatedwith the system of vector fields X.</abstract><doi>10.1007/bf02109387</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 1996, Vol.12 (1), p.18-32
issn 1439-8516
1439-7617
language eng
recordid cdi_crossref_primary_10_1007_BF02109387
source SpringerNature Journals; Alma/SFX Local Collection
subjects equation
Dirichlet
estimate
priori
problem
A
Sub-elliptic
title Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirichlet%20Problems%20for%20the%20Quasilinear%20Second%20Order%20Subelliptic%20Equations&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Chaojiang,%20Xu&rft.date=1996&rft.volume=12&rft.issue=1&rft.spage=18&rft.epage=32&rft.pages=18-32&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/bf02109387&rft_dat=%3Ccrossref_chong%3E10_1007_BF02109387%3C/crossref_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=665677783199601002&rfr_iscdi=true