Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations

<正> In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 1996, Vol.12 (1), p.18-32
1. Verfasser: Chaojiang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:<正> In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), Bj, C∈C∞(■×R) and (Ai,j(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the "non-isotropic" Hlder space associatedwith the system of vector fields X.
ISSN:1439-8516
1439-7617
DOI:10.1007/bf02109387