Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations
<正> In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 1996, Vol.12 (1), p.18-32 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | <正> In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(Xi*(Ai,j(x,u)Xj u)+sum from j=1 to m(Bj(x,u)Xj u+C(x,u)=0 in Ω, u=φ on Ω,where X={X1, …, Xm} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), Bj, C∈C∞(■×R) and (Ai,j(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the "non-isotropic" Hlder space associatedwith the system of vector fields X. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/bf02109387 |