ON THE EXISTENCE OF LIMIT CYCLES OF LIENARD EQUATION

In this paper,we have proved several theorems which guarantee that the Lienardequation has at least one or n limit cycles without using the traditional assmuption G(±∞)=+∞.Thus some results in[3 -5]are extended.The limit cycles can be located by ourtheorems.Theorems3 and4 give sufficient conditions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and mechanics 1990-02, Vol.11 (2), p.125-138
1. Verfasser: 黄安基 曹登庆
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper,we have proved several theorems which guarantee that the Lienardequation has at least one or n limit cycles without using the traditional assmuption G(±∞)=+∞.Thus some results in[3 -5]are extended.The limit cycles can be located by ourtheorems.Theorems3 and4 give sufficient conditions for the existence of n limit cycleshaving no need of the conditions that the function F(x)is odd or“nth order compatible witheach other”or“nth order contained in each other”.
ISSN:0253-4827
1573-2754
DOI:10.1007/BF02014537