Pulmonary oxygen toxicity: demonstration of abnormal capillary permeability using contrast-enhanced MRI

An animal model of oxygen-induced pulmonary injury was used to assess the potential of contrast-enhanced MRI to identify and quantify abnormal capillary permeability. Sprague-Dawley rats were exposed to 100% oxygen for 48 h (n = 5) or 60 h (n = 9). Axial spin-echo MR images were acquired in intubate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric radiology 1993-11, Vol.23 (7), p.495-500
Hauptverfasser: BRASCH, R. C, BERTHEZENE, Y, VEXLER, V, ROSENAU, W, CLEMENT, O, MÜHLER, A, KUWATSURU, R, SHAMES, D. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An animal model of oxygen-induced pulmonary injury was used to assess the potential of contrast-enhanced MRI to identify and quantify abnormal capillary permeability. Sprague-Dawley rats were exposed to 100% oxygen for 48 h (n = 5) or 60 h (n = 9). Axial spin-echo MR images were acquired in intubated, anesthetized rats with ECG-gating (TR 400; TE 6) immediately or 7 days after the cessation of oxygen exposure. Polylysine-Gd-DTPA, a macromolecular paramagnetic blood-pool marker, was then given intravenously and the lungs were serially imaged for 42 to 47 min to monitor changes in signal intensity. Pulmonary enhancement was stable in rats exposed to 48 h of oxygen, and in rats exposed to 60 h of oxygen and given 7 days to recover. However, animals exposed to 100% oxygen for 60 h without a period of recovery showed a progressive increase in lung signal intensity for 15 min after polylysine-Gd-DTPA. Pleural effusions also showed progressively increasing signal, reflecting a capillary endothelial leak. A two compartment model describing the kinetics of polylysine-Gd-DTPA in the plasma and interstitial water of the lung was consistent with the dynamic MRI data and allowed estimation of the fractional leak rate (0.235 min-1) of the contrast agent from plasma to interstitial water. Given the assumption of our kinetic model, MRI following intravenous administration of polylysine-Gd-DTPA can be used to quantitate changes in capillary integrity induced by hyperoxia, including acute capillary leakiness and return to normal endothelial integrity with recovery from hyperoxic injury.
ISSN:0301-0449
1432-1998
DOI:10.1007/BF02012128