Nonlinear response of biophoton emission to external perturbations

By considering an exciplex system consisting of collective molecules in interaction with both the 'pumping' fields and the biophoton fields, the two-level exciplex model and the three-level exciplex model are presented. They are useful for the investigation of the quasi-stationary behaviou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experientia 1992-12, Vol.48 (11-12), p.1069-1082
Hauptverfasser: Gu, Q, Popp, F A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By considering an exciplex system consisting of collective molecules in interaction with both the 'pumping' fields and the biophoton fields, the two-level exciplex model and the three-level exciplex model are presented. They are useful for the investigation of the quasi-stationary behaviour of biophoton emission, and biophoton emission as a dynamic process in the presence of external perturbations. Our theoretical results predict a series of nonlinear effects, such as chaos, fractal behaviour, and non-equilibrium phase transition. These effects characterize the coherence nature of living systems. In our approaches, there are two important quantities f and x, which can be used to mark the working points of the two-level and three-level exciplex systems. All the influences of external perturbations on the exciplex systems, e.g. change of temperature, the addition of agents, exposure to light, etc., can be interpreted as shifts of the working points of the systems, leading to a diversity of nonlinear response of biophoton emission. In addition, the agreements of the theoretical results and the corresponding experimental observations on biophoton emission from biological systems in the presence of external perturbations are demonstrated.
ISSN:0014-4754
1420-9071
DOI:10.1007/BF01947994