New advances in coenzyme Q biosynthesis

Coenzyme Q (or ubiquinone) is the product of two distinct biosynthetic pathways: the lipid “tail” of coenzyme Q is formed via the isoprene biosynthetic pathway, and the quinone ring derives from the metabolism of either shikimic acid or tyrosine. In general, eukaryotic organisms use the classical me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protoplasma 2000-01, Vol.213 (3-4), p.134-147
1. Verfasser: Clarke, Catherine F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coenzyme Q (or ubiquinone) is the product of two distinct biosynthetic pathways: the lipid “tail” of coenzyme Q is formed via the isoprene biosynthetic pathway, and the quinone ring derives from the metabolism of either shikimic acid or tyrosine. In general, eukaryotic organisms use the classical mevalonate pathway to form isopentenyl- and dimethylallyl-diphosphate, the five carbon building blocks of the polyisoprenoid tail, and prokaryotes use 1-deoxy-D-xylulose-5-phosphate, formed via the Rohmer pathway. The quinone ring precursor is 4-hydroxybenzoic acid, which is formed directly from chorismate inSaccharomyces cerevisiae andEscherichia coli, or from tyrosine in animal cells. Ring modification steps including prenylation, decarboxylation, and successive hydroxylation and methylation steps form the fully substituted benzoquinone ring of coenzyme Q. Many of the genes and polypeptides involved in coenzyme Q biosynthesis have been isolated and characterized by utilizing strains ofE. coli andS. cerevisiae with mutations in theubi andCOQ genes, respectively. This article reviews recent progress in characterizing the biosynthesis of coenzyme Q inE. coli, S. cerevisiae, and other eukaryotic organisms.
ISSN:0033-183X
1615-6102
DOI:10.1007/BF01282151