Phantom evaluation of simultaneous thallium-201/technetium-99m aquisition in single-photon emission tomography

This study investigated downscatter effects in cardiac single-photon emission tomographic studies with simultaneous thallium-201/technetium-99m acquisition, and evaluated a previously proposed subtraction technique for downscatter compensation. Ten studies were carried out with different defect size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Journal of Nuclear Medicine 1996-11, Vol.23 (11), p.1514-1520
Hauptverfasser: CAO, Z, CHEN, C. C, MAUNOURY, C, HOLDER, L. E, AGRAHAM, T. C, TEHAN, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated downscatter effects in cardiac single-photon emission tomographic studies with simultaneous thallium-201/technetium-99m acquisition, and evaluated a previously proposed subtraction technique for downscatter compensation. Ten studies were carried out with different defect sizes and locations and varying activity distributions using four energy windows: 70+/-10% keV, 140+/-10% keV, 100+/-10% KeV, and 103+/-16% keV. The subtraction technique used the 100- or 103-keV data to remove scattered 99mTc counts from the 70-keV data. The size and contrast of infarcts in the dual-isotope 70-keV image were artificially decreased compared to those in the 140-keV image, caused by scattered 99mTc counts that were comparable to the primary 201Tl counts in the 70-keV window. The subtraction technique produced larger defects and more heterogeneous activity in the myocardial wall in dual-isotope 70-keV images compared to the corresponding 201Tl-only images. These artifacts were caused by the markedly different spatial distributions of scattered 99mTc counts in the 100-keV (or 103-keV) window as compared with the 70-keV window. It is concluded that scattered 99mTc photons may cause overestimation of ischemia and myocardial viability in simultaneous dual-isotope patient studies. The proposed subtraction technique was inaccurate and produced image artifacts. Adequate downscatter compensation methods must be developed before applying simultaneous 201Tl/99mTc acquisition in clinical practice.
ISSN:0340-6997
1619-7089
DOI:10.1007/BF01254477