Photobleaching of astaxanthin and canthaxanthin : quantum-yields dependence of solvent, temperature and wavelength of irradiation in relation to packaging and storage of carotenoid pigmented salmonoids

The quantum yield for the photobleaching of astaxanthin (the carotenoid of wild salmonoids) and of canthaxanthin (the closely related carotenoid used as a feeding additive for farmed salmonoids) has been determined for monochromatic light at different wavelengths and in different solvents. Astaxanth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift f r Lebensmittel-Untersuchung und -Forschung 1991-05, Vol.192 (5), p.433-439
Hauptverfasser: CHRISTOPHERSEN, A. G, JUN, H, JORGENSEN, K, SKIBSTED, L. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantum yield for the photobleaching of astaxanthin (the carotenoid of wild salmonoids) and of canthaxanthin (the closely related carotenoid used as a feeding additive for farmed salmonoids) has been determined for monochromatic light at different wavelengths and in different solvents. Astaxanthin is less sensitive to light than canthaxanthin. The photobleaching is strongly wavelength dependent, and the quantum yield for astaxanthin dissolved in chloroform at 22 degrees C is 3.2 x 10(-1) mol.Einstein-1 at 254 nm, 3.1 x 10(-2) at 313 nm, and 1.6 x 10(-6) at 436 nm, respectively. The quantum yields are less dependent on the nature of the solvent and show no simple correlation with oxygen solubility, i.e. for 366 nm excitation of astaxanthin the quantum yields are 6.1 x 10(-5) mol.Einstein-1 in acetone, 1.2 x 10(-4) in saturated vegetable oil, 1.9 x 10(-4) in chloroform, and 3.4 x 10(-4) solubilized in water, respectively. The photobleaching quantum yield provides an objective measure of the light sensitivity of the carotenoids in relation to the discolouration of carotenoid-pigmented salmonoids. The quantum yield was also found to be independent of the carotenoid concentration and, in a homogenous solution, of light intensities. For astaxanthin solubilized in water, the quantum yield increases for low light intensities. Excitation of astaxanthin solubilized in water using visible light shows that the photobleaching quantum yield is independent of temperature, while excitation at 313 nm shows an increase in the quantum yield with increasing temperatures, corresponding to an energy of activation of 28 kJ.mol-1.
ISSN:0044-3026
1438-2385
DOI:10.1007/BF01193143