Anderson localization in the nondiscrete maryland model

A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theor. Math. Phys.; (United States) 1987-02, Vol.70 (2), p.133-140
Hauptverfasser: Geiler, V. A., Margulis, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 2
container_start_page 133
container_title Theor. Math. Phys.; (United States)
container_volume 70
creator Geiler, V. A.
Margulis, V. A.
description A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.
doi_str_mv 10.1007/BF01039202
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01039202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF01039202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsXP8HiUVh9-bOb7LEWq0LBi56X7NsXGtkmkuSin94tFXqZYeDHMAxjtxweOIB-fNoAB9kJEGdswRst605Kec4WAArqRuvukl3l_AUzBoYvmF6FkVKOoZoi2sn_2uLn4ENVdlSFGEafMVGham_Tz2TDWO3jSNM1u3B2ynTz70v2uXn-WL_W2_eXt_VqW6No2lITHxWMGsEYSzg4p2SDgxUaHRgxtAo7bJRW3JHoZlGGC0PcWT4nRU4u2d2xN-bi-4y-EO4whkBY-sYI0yo5Q_dHCFPMOZHrv5M_7O059Idf-tMv8g-gWVTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anderson localization in the nondiscrete maryland model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Geiler, V. A. ; Margulis, V. A.</creator><creatorcontrib>Geiler, V. A. ; Margulis, V. A. ; Mordovian State Univ., USSR</creatorcontrib><description>A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1007/BF01039202</identifier><language>eng</language><publisher>United States</publisher><subject>645400 - High Energy Physics- Field Theory ; 657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; BANACH SPACE ; BAND THEORY ; CANONICAL TRANSFORMATIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COUPLING CONSTANTS ; CRYSTAL LATTICES ; CRYSTAL MODELS ; CRYSTAL STRUCTURE ; DIFFERENTIAL EQUATIONS ; EIGENFUNCTIONS ; ELECTRONS ; ELEMENTARY PARTICLES ; ENERGY GAP ; ENERGY-LEVEL TRANSITIONS ; EQUATIONS ; FERMIONS ; FIELD THEORIES ; FORBIDDEN TRANSITIONS ; FUNCTIONS ; HALL EFFECT ; HAMILTONIANS ; HILBERT SPACE ; LEPTONS ; LOCALITY ; MAGNETIC FIELDS ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MATHEMATICAL SPACE ; MATRICES ; MECHANICS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTIZATION ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; SCHROEDINGER EQUATION ; SPACE ; TENSORS ; TRANSFORMATIONS ; VECTORS ; WAVE EQUATIONS</subject><ispartof>Theor. Math. Phys.; (United States), 1987-02, Vol.70 (2), p.133-140</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</citedby><cites>FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5828643$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiler, V. A.</creatorcontrib><creatorcontrib>Margulis, V. A.</creatorcontrib><creatorcontrib>Mordovian State Univ., USSR</creatorcontrib><title>Anderson localization in the nondiscrete maryland model</title><title>Theor. Math. Phys.; (United States)</title><description>A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>BANACH SPACE</subject><subject>BAND THEORY</subject><subject>CANONICAL TRANSFORMATIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COUPLING CONSTANTS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL MODELS</subject><subject>CRYSTAL STRUCTURE</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EIGENFUNCTIONS</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ENERGY GAP</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EQUATIONS</subject><subject>FERMIONS</subject><subject>FIELD THEORIES</subject><subject>FORBIDDEN TRANSITIONS</subject><subject>FUNCTIONS</subject><subject>HALL EFFECT</subject><subject>HAMILTONIANS</subject><subject>HILBERT SPACE</subject><subject>LEPTONS</subject><subject>LOCALITY</subject><subject>MAGNETIC FIELDS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SPACE</subject><subject>MATRICES</subject><subject>MECHANICS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTIZATION</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>SCHROEDINGER EQUATION</subject><subject>SPACE</subject><subject>TENSORS</subject><subject>TRANSFORMATIONS</subject><subject>VECTORS</subject><subject>WAVE EQUATIONS</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsXP8HiUVh9-bOb7LEWq0LBi56X7NsXGtkmkuSin94tFXqZYeDHMAxjtxweOIB-fNoAB9kJEGdswRst605Kec4WAArqRuvukl3l_AUzBoYvmF6FkVKOoZoi2sn_2uLn4ENVdlSFGEafMVGham_Tz2TDWO3jSNM1u3B2ynTz70v2uXn-WL_W2_eXt_VqW6No2lITHxWMGsEYSzg4p2SDgxUaHRgxtAo7bJRW3JHoZlGGC0PcWT4nRU4u2d2xN-bi-4y-EO4whkBY-sYI0yo5Q_dHCFPMOZHrv5M_7O059Idf-tMv8g-gWVTU</recordid><startdate>19870201</startdate><enddate>19870201</enddate><creator>Geiler, V. A.</creator><creator>Margulis, V. A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870201</creationdate><title>Anderson localization in the nondiscrete maryland model</title><author>Geiler, V. A. ; Margulis, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>BANACH SPACE</topic><topic>BAND THEORY</topic><topic>CANONICAL TRANSFORMATIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COUPLING CONSTANTS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL MODELS</topic><topic>CRYSTAL STRUCTURE</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EIGENFUNCTIONS</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ENERGY GAP</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EQUATIONS</topic><topic>FERMIONS</topic><topic>FIELD THEORIES</topic><topic>FORBIDDEN TRANSITIONS</topic><topic>FUNCTIONS</topic><topic>HALL EFFECT</topic><topic>HAMILTONIANS</topic><topic>HILBERT SPACE</topic><topic>LEPTONS</topic><topic>LOCALITY</topic><topic>MAGNETIC FIELDS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SPACE</topic><topic>MATRICES</topic><topic>MECHANICS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTIZATION</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>SCHROEDINGER EQUATION</topic><topic>SPACE</topic><topic>TENSORS</topic><topic>TRANSFORMATIONS</topic><topic>VECTORS</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiler, V. A.</creatorcontrib><creatorcontrib>Margulis, V. A.</creatorcontrib><creatorcontrib>Mordovian State Univ., USSR</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Theor. Math. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiler, V. A.</au><au>Margulis, V. A.</au><aucorp>Mordovian State Univ., USSR</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anderson localization in the nondiscrete maryland model</atitle><jtitle>Theor. Math. Phys.; (United States)</jtitle><date>1987-02-01</date><risdate>1987</risdate><volume>70</volume><issue>2</issue><spage>133</spage><epage>140</epage><pages>133-140</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.</abstract><cop>United States</cop><doi>10.1007/BF01039202</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theor. Math. Phys.; (United States), 1987-02, Vol.70 (2), p.133-140
issn 0040-5779
1573-9333
language eng
recordid cdi_crossref_primary_10_1007_BF01039202
source SpringerLink Journals - AutoHoldings
subjects 645400 - High Energy Physics- Field Theory
657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
BANACH SPACE
BAND THEORY
CANONICAL TRANSFORMATIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COUPLING CONSTANTS
CRYSTAL LATTICES
CRYSTAL MODELS
CRYSTAL STRUCTURE
DIFFERENTIAL EQUATIONS
EIGENFUNCTIONS
ELECTRONS
ELEMENTARY PARTICLES
ENERGY GAP
ENERGY-LEVEL TRANSITIONS
EQUATIONS
FERMIONS
FIELD THEORIES
FORBIDDEN TRANSITIONS
FUNCTIONS
HALL EFFECT
HAMILTONIANS
HILBERT SPACE
LEPTONS
LOCALITY
MAGNETIC FIELDS
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MATHEMATICAL SPACE
MATRICES
MECHANICS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTIZATION
QUANTUM FIELD THEORY
QUANTUM MECHANICS
QUANTUM OPERATORS
SCHROEDINGER EQUATION
SPACE
TENSORS
TRANSFORMATIONS
VECTORS
WAVE EQUATIONS
title Anderson localization in the nondiscrete maryland model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anderson%20localization%20in%20the%20nondiscrete%20maryland%20model&rft.jtitle=Theor.%20Math.%20Phys.;%20(United%20States)&rft.au=Geiler,%20V.%20A.&rft.aucorp=Mordovian%20State%20Univ.,%20USSR&rft.date=1987-02-01&rft.volume=70&rft.issue=2&rft.spage=133&rft.epage=140&rft.pages=133-140&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1007/BF01039202&rft_dat=%3Ccrossref_osti_%3E10_1007_BF01039202%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true