Anderson localization in the nondiscrete maryland model
A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A...
Gespeichert in:
Veröffentlicht in: | Theor. Math. Phys.; (United States) 1987-02, Vol.70 (2), p.133-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | Theor. Math. Phys.; (United States) |
container_volume | 70 |
creator | Geiler, V. A. Margulis, V. A. |
description | A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found. |
doi_str_mv | 10.1007/BF01039202 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01039202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF01039202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsXP8HiUVh9-bOb7LEWq0LBi56X7NsXGtkmkuSin94tFXqZYeDHMAxjtxweOIB-fNoAB9kJEGdswRst605Kec4WAArqRuvukl3l_AUzBoYvmF6FkVKOoZoi2sn_2uLn4ENVdlSFGEafMVGham_Tz2TDWO3jSNM1u3B2ynTz70v2uXn-WL_W2_eXt_VqW6No2lITHxWMGsEYSzg4p2SDgxUaHRgxtAo7bJRW3JHoZlGGC0PcWT4nRU4u2d2xN-bi-4y-EO4whkBY-sYI0yo5Q_dHCFPMOZHrv5M_7O059Idf-tMv8g-gWVTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anderson localization in the nondiscrete maryland model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Geiler, V. A. ; Margulis, V. A.</creator><creatorcontrib>Geiler, V. A. ; Margulis, V. A. ; Mordovian State Univ., USSR</creatorcontrib><description>A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1007/BF01039202</identifier><language>eng</language><publisher>United States</publisher><subject>645400 - High Energy Physics- Field Theory ; 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ; BANACH SPACE ; BAND THEORY ; CANONICAL TRANSFORMATIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COUPLING CONSTANTS ; CRYSTAL LATTICES ; CRYSTAL MODELS ; CRYSTAL STRUCTURE ; DIFFERENTIAL EQUATIONS ; EIGENFUNCTIONS ; ELECTRONS ; ELEMENTARY PARTICLES ; ENERGY GAP ; ENERGY-LEVEL TRANSITIONS ; EQUATIONS ; FERMIONS ; FIELD THEORIES ; FORBIDDEN TRANSITIONS ; FUNCTIONS ; HALL EFFECT ; HAMILTONIANS ; HILBERT SPACE ; LEPTONS ; LOCALITY ; MAGNETIC FIELDS ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MATHEMATICAL SPACE ; MATRICES ; MECHANICS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTIZATION ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; SCHROEDINGER EQUATION ; SPACE ; TENSORS ; TRANSFORMATIONS ; VECTORS ; WAVE EQUATIONS</subject><ispartof>Theor. Math. Phys.; (United States), 1987-02, Vol.70 (2), p.133-140</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</citedby><cites>FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5828643$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiler, V. A.</creatorcontrib><creatorcontrib>Margulis, V. A.</creatorcontrib><creatorcontrib>Mordovian State Univ., USSR</creatorcontrib><title>Anderson localization in the nondiscrete maryland model</title><title>Theor. Math. Phys.; (United States)</title><description>A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</subject><subject>BANACH SPACE</subject><subject>BAND THEORY</subject><subject>CANONICAL TRANSFORMATIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COUPLING CONSTANTS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL MODELS</subject><subject>CRYSTAL STRUCTURE</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EIGENFUNCTIONS</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ENERGY GAP</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EQUATIONS</subject><subject>FERMIONS</subject><subject>FIELD THEORIES</subject><subject>FORBIDDEN TRANSITIONS</subject><subject>FUNCTIONS</subject><subject>HALL EFFECT</subject><subject>HAMILTONIANS</subject><subject>HILBERT SPACE</subject><subject>LEPTONS</subject><subject>LOCALITY</subject><subject>MAGNETIC FIELDS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SPACE</subject><subject>MATRICES</subject><subject>MECHANICS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTIZATION</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>SCHROEDINGER EQUATION</subject><subject>SPACE</subject><subject>TENSORS</subject><subject>TRANSFORMATIONS</subject><subject>VECTORS</subject><subject>WAVE EQUATIONS</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsXP8HiUVh9-bOb7LEWq0LBi56X7NsXGtkmkuSin94tFXqZYeDHMAxjtxweOIB-fNoAB9kJEGdswRst605Kec4WAArqRuvukl3l_AUzBoYvmF6FkVKOoZoi2sn_2uLn4ENVdlSFGEafMVGham_Tz2TDWO3jSNM1u3B2ynTz70v2uXn-WL_W2_eXt_VqW6No2lITHxWMGsEYSzg4p2SDgxUaHRgxtAo7bJRW3JHoZlGGC0PcWT4nRU4u2d2xN-bi-4y-EO4whkBY-sYI0yo5Q_dHCFPMOZHrv5M_7O059Idf-tMv8g-gWVTU</recordid><startdate>19870201</startdate><enddate>19870201</enddate><creator>Geiler, V. A.</creator><creator>Margulis, V. A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870201</creationdate><title>Anderson localization in the nondiscrete maryland model</title><author>Geiler, V. A. ; Margulis, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-e1d40d7c088aecbff435cba27cf082b64c9c54741fe291fe48128e1fa191f4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</topic><topic>BANACH SPACE</topic><topic>BAND THEORY</topic><topic>CANONICAL TRANSFORMATIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COUPLING CONSTANTS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL MODELS</topic><topic>CRYSTAL STRUCTURE</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EIGENFUNCTIONS</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ENERGY GAP</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EQUATIONS</topic><topic>FERMIONS</topic><topic>FIELD THEORIES</topic><topic>FORBIDDEN TRANSITIONS</topic><topic>FUNCTIONS</topic><topic>HALL EFFECT</topic><topic>HAMILTONIANS</topic><topic>HILBERT SPACE</topic><topic>LEPTONS</topic><topic>LOCALITY</topic><topic>MAGNETIC FIELDS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SPACE</topic><topic>MATRICES</topic><topic>MECHANICS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTIZATION</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>SCHROEDINGER EQUATION</topic><topic>SPACE</topic><topic>TENSORS</topic><topic>TRANSFORMATIONS</topic><topic>VECTORS</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiler, V. A.</creatorcontrib><creatorcontrib>Margulis, V. A.</creatorcontrib><creatorcontrib>Mordovian State Univ., USSR</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Theor. Math. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiler, V. A.</au><au>Margulis, V. A.</au><aucorp>Mordovian State Univ., USSR</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anderson localization in the nondiscrete maryland model</atitle><jtitle>Theor. Math. Phys.; (United States)</jtitle><date>1987-02-01</date><risdate>1987</risdate><volume>70</volume><issue>2</issue><spage>133</spage><epage>140</epage><pages>133-140</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.</abstract><cop>United States</cop><doi>10.1007/BF01039202</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theor. Math. Phys.; (United States), 1987-02, Vol.70 (2), p.133-140 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF01039202 |
source | SpringerLink Journals - AutoHoldings |
subjects | 645400 - High Energy Physics- Field Theory 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics BANACH SPACE BAND THEORY CANONICAL TRANSFORMATIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COUPLING CONSTANTS CRYSTAL LATTICES CRYSTAL MODELS CRYSTAL STRUCTURE DIFFERENTIAL EQUATIONS EIGENFUNCTIONS ELECTRONS ELEMENTARY PARTICLES ENERGY GAP ENERGY-LEVEL TRANSITIONS EQUATIONS FERMIONS FIELD THEORIES FORBIDDEN TRANSITIONS FUNCTIONS HALL EFFECT HAMILTONIANS HILBERT SPACE LEPTONS LOCALITY MAGNETIC FIELDS MATHEMATICAL MODELS MATHEMATICAL OPERATORS MATHEMATICAL SPACE MATRICES MECHANICS PARTIAL DIFFERENTIAL EQUATIONS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUANTIZATION QUANTUM FIELD THEORY QUANTUM MECHANICS QUANTUM OPERATORS SCHROEDINGER EQUATION SPACE TENSORS TRANSFORMATIONS VECTORS WAVE EQUATIONS |
title | Anderson localization in the nondiscrete maryland model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anderson%20localization%20in%20the%20nondiscrete%20maryland%20model&rft.jtitle=Theor.%20Math.%20Phys.;%20(United%20States)&rft.au=Geiler,%20V.%20A.&rft.aucorp=Mordovian%20State%20Univ.,%20USSR&rft.date=1987-02-01&rft.volume=70&rft.issue=2&rft.spage=133&rft.epage=140&rft.pages=133-140&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1007/BF01039202&rft_dat=%3Ccrossref_osti_%3E10_1007_BF01039202%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |