Anderson localization in the nondiscrete maryland model

A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theor. Math. Phys.; (United States) 1987-02, Vol.70 (2), p.133-140
Hauptverfasser: Geiler, V. A., Margulis, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study is made of a Schroedinger operator H = H/sub 0/ + V, where V is an almost periodic point potential and the Hamiltonian H/sub 0/ is subject to certain conditions that are satisfied, in particular, by two- and three-dimensional operators of the form H/sub 0/ = -..delta.. and H/sub 0/ = (idel-A)/sup 2/, where A is the vector potential of a homogeneous magnetic field. It is shown that under certain conditions of incommensurability for V the forbidden gaps of H/sub 0/ are densely filled by nondegenerate localized states of the operator H; the form of the corresponding eigenfunctions is found.
ISSN:0040-5779
1573-9333
DOI:10.1007/BF01039202