Logarithmic corrections to finite-size scaling in the four-state Potts model

The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1988-08, Vol.52 (3-4), p.679-710
Hauptverfasser: HAMER, C. J, BATCHELOR, M. T, BARBER, M. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 3-4
container_start_page 679
container_title J. Stat. Phys.; (United States)
container_volume 52
creator HAMER, C. J
BATCHELOR, M. T
BARBER, M. N
description The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large chain length L as x +d/ln L + o((ln L)/sup /minus/1/), where x is the anomalous dimension of the associated primary scaling operator. For the gaps associated with the energy and magnetic operators, the values of the amplitudes d are in agreement with predictions of conformal invariance. The implications of these analytical results for the extrapolation of finite lattice data are discussed. Accurate estimates of x and d are found to be extremely difficult even with data available from large lattices, L approx.500.
doi_str_mv 10.1007/bf01019724
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01019724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7351777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-d9268a472f30db5feb596ed7d543140d7eb3ba851d1f56fab21beb4e28ea35313</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKsbf0EQV0I0L5kkM0stVoUBXeh6yGcbaScliQv99Y5UXb3NeZd7D0LnQK-BUnVjAgUKnWLNAZqBUIx0EvghmlHKGGkUiGN0Uso7pbRrOzFDfZ9WOse63kaLbcrZ2xrTWHBNOMQxVk9K_PK4WL2J4wrHEde1xyF9ZFKqrh6_pFoL3ibnN6foKOhN8We_d47elvevi0fSPz88LW57YpmUlbiOyVY3igVOnRHBG9FJ75QTDYeGOuUNN7oV4CAIGbRhYLxpPGu95oIDn6OLfW4qNQ7FTi3t2qZxnMoPcjLAp6Q5utpDNqdSsg_DLsetzp8D0OFH1nC3_JM1wZd7eKd_loasRxvL_4fiApRS_BtlXGkT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Logarithmic corrections to finite-size scaling in the four-state Potts model</title><source>SpringerLink Journals</source><creator>HAMER, C. J ; BATCHELOR, M. T ; BARBER, M. N</creator><creatorcontrib>HAMER, C. J ; BATCHELOR, M. T ; BARBER, M. N ; Univ. of New South Wales, Kensington (Australia)</creatorcontrib><description>The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large chain length L as x +d/ln L + o((ln L)/sup /minus/1/), where x is the anomalous dimension of the associated primary scaling operator. For the gaps associated with the energy and magnetic operators, the values of the amplitudes d are in agreement with predictions of conformal invariance. The implications of these analytical results for the extrapolation of finite lattice data are discussed. Accurate estimates of x and d are found to be extremely difficult even with data available from large lattices, L approx.500.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/bf01019724</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>645400 - High Energy Physics- Field Theory ; 656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-) ; 657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; ANALYTICAL SOLUTION ; ANGULAR MOMENTUM ; ANOMALOUS DIMENSION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONFORMAL INVARIANCE ; CORRECTIONS ; CRYSTAL LATTICES ; CRYSTAL MODELS ; CRYSTAL STRUCTURE ; EIGENSTATES ; EIGENVALUES ; ENERGY GAP ; ENERGY LEVELS ; Exact sciences and technology ; EXCITED STATES ; EXTRAPOLATION ; FIELD THEORIES ; GROUND STATES ; HAMILTONIANS ; HEISENBERG MODEL ; INVARIANCE PRINCIPLES ; Lattice theory and statistics (ising, potts, etc.) ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MECHANICS ; NUMERICAL SOLUTION ; PARTICLE PROPERTIES ; PERTURBATION THEORY ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; SCALE DIMENSION ; SCALING LAWS ; SPIN ; STATISTICAL MECHANICS ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>J. Stat. Phys.; (United States), 1988-08, Vol.52 (3-4), p.679-710</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-d9268a472f30db5feb596ed7d543140d7eb3ba851d1f56fab21beb4e28ea35313</citedby><cites>FETCH-LOGICAL-c266t-d9268a472f30db5feb596ed7d543140d7eb3ba851d1f56fab21beb4e28ea35313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7351777$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6010354$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HAMER, C. J</creatorcontrib><creatorcontrib>BATCHELOR, M. T</creatorcontrib><creatorcontrib>BARBER, M. N</creatorcontrib><creatorcontrib>Univ. of New South Wales, Kensington (Australia)</creatorcontrib><title>Logarithmic corrections to finite-size scaling in the four-state Potts model</title><title>J. Stat. Phys.; (United States)</title><description>The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large chain length L as x +d/ln L + o((ln L)/sup /minus/1/), where x is the anomalous dimension of the associated primary scaling operator. For the gaps associated with the energy and magnetic operators, the values of the amplitudes d are in agreement with predictions of conformal invariance. The implications of these analytical results for the extrapolation of finite lattice data are discussed. Accurate estimates of x and d are found to be extremely difficult even with data available from large lattices, L approx.500.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</subject><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>ANALYTICAL SOLUTION</subject><subject>ANGULAR MOMENTUM</subject><subject>ANOMALOUS DIMENSION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONFORMAL INVARIANCE</subject><subject>CORRECTIONS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL MODELS</subject><subject>CRYSTAL STRUCTURE</subject><subject>EIGENSTATES</subject><subject>EIGENVALUES</subject><subject>ENERGY GAP</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>EXCITED STATES</subject><subject>EXTRAPOLATION</subject><subject>FIELD THEORIES</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>HEISENBERG MODEL</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Lattice theory and statistics (ising, potts, etc.)</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTICLE PROPERTIES</subject><subject>PERTURBATION THEORY</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>SCALE DIMENSION</subject><subject>SCALING LAWS</subject><subject>SPIN</subject><subject>STATISTICAL MECHANICS</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKsbf0EQV0I0L5kkM0stVoUBXeh6yGcbaScliQv99Y5UXb3NeZd7D0LnQK-BUnVjAgUKnWLNAZqBUIx0EvghmlHKGGkUiGN0Uso7pbRrOzFDfZ9WOse63kaLbcrZ2xrTWHBNOMQxVk9K_PK4WL2J4wrHEde1xyF9ZFKqrh6_pFoL3ibnN6foKOhN8We_d47elvevi0fSPz88LW57YpmUlbiOyVY3igVOnRHBG9FJ75QTDYeGOuUNN7oV4CAIGbRhYLxpPGu95oIDn6OLfW4qNQ7FTi3t2qZxnMoPcjLAp6Q5utpDNqdSsg_DLsetzp8D0OFH1nC3_JM1wZd7eKd_loasRxvL_4fiApRS_BtlXGkT</recordid><startdate>198808</startdate><enddate>198808</enddate><creator>HAMER, C. J</creator><creator>BATCHELOR, M. T</creator><creator>BARBER, M. N</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198808</creationdate><title>Logarithmic corrections to finite-size scaling in the four-state Potts model</title><author>HAMER, C. J ; BATCHELOR, M. T ; BARBER, M. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-d9268a472f30db5feb596ed7d543140d7eb3ba851d1f56fab21beb4e28ea35313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</topic><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>ANALYTICAL SOLUTION</topic><topic>ANGULAR MOMENTUM</topic><topic>ANOMALOUS DIMENSION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONFORMAL INVARIANCE</topic><topic>CORRECTIONS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL MODELS</topic><topic>CRYSTAL STRUCTURE</topic><topic>EIGENSTATES</topic><topic>EIGENVALUES</topic><topic>ENERGY GAP</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>EXCITED STATES</topic><topic>EXTRAPOLATION</topic><topic>FIELD THEORIES</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>HEISENBERG MODEL</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Lattice theory and statistics (ising, potts, etc.)</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTICLE PROPERTIES</topic><topic>PERTURBATION THEORY</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>SCALE DIMENSION</topic><topic>SCALING LAWS</topic><topic>SPIN</topic><topic>STATISTICAL MECHANICS</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMER, C. J</creatorcontrib><creatorcontrib>BATCHELOR, M. T</creatorcontrib><creatorcontrib>BARBER, M. N</creatorcontrib><creatorcontrib>Univ. of New South Wales, Kensington (Australia)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMER, C. J</au><au>BATCHELOR, M. T</au><au>BARBER, M. N</au><aucorp>Univ. of New South Wales, Kensington (Australia)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmic corrections to finite-size scaling in the four-state Potts model</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1988-08</date><risdate>1988</risdate><volume>52</volume><issue>3-4</issue><spage>679</spage><epage>710</epage><pages>679-710</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large chain length L as x +d/ln L + o((ln L)/sup /minus/1/), where x is the anomalous dimension of the associated primary scaling operator. For the gaps associated with the energy and magnetic operators, the values of the amplitudes d are in agreement with predictions of conformal invariance. The implications of these analytical results for the extrapolation of finite lattice data are discussed. Accurate estimates of x and d are found to be extremely difficult even with data available from large lattices, L approx.500.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/bf01019724</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof J. Stat. Phys.; (United States), 1988-08, Vol.52 (3-4), p.679-710
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_BF01019724
source SpringerLink Journals
subjects 645400 - High Energy Physics- Field Theory
656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)
657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
ANALYTICAL SOLUTION
ANGULAR MOMENTUM
ANOMALOUS DIMENSION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CONFORMAL INVARIANCE
CORRECTIONS
CRYSTAL LATTICES
CRYSTAL MODELS
CRYSTAL STRUCTURE
EIGENSTATES
EIGENVALUES
ENERGY GAP
ENERGY LEVELS
Exact sciences and technology
EXCITED STATES
EXTRAPOLATION
FIELD THEORIES
GROUND STATES
HAMILTONIANS
HEISENBERG MODEL
INVARIANCE PRINCIPLES
Lattice theory and statistics (ising, potts, etc.)
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MECHANICS
NUMERICAL SOLUTION
PARTICLE PROPERTIES
PERTURBATION THEORY
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTUM FIELD THEORY
QUANTUM MECHANICS
QUANTUM OPERATORS
SCALE DIMENSION
SCALING LAWS
SPIN
STATISTICAL MECHANICS
Statistical physics, thermodynamics, and nonlinear dynamical systems
title Logarithmic corrections to finite-size scaling in the four-state Potts model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmic%20corrections%20to%20finite-size%20scaling%20in%20the%20four-state%20Potts%20model&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=HAMER,%20C.%20J&rft.aucorp=Univ.%20of%20New%20South%20Wales,%20Kensington%20(Australia)&rft.date=1988-08&rft.volume=52&rft.issue=3-4&rft.spage=679&rft.epage=710&rft.pages=679-710&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/bf01019724&rft_dat=%3Cpascalfrancis_osti_%3E7351777%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true