Logarithmic corrections to finite-size scaling in the four-state Potts model

The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1988-08, Vol.52 (3-4), p.679-710
Hauptverfasser: HAMER, C. J, BATCHELOR, M. T, BARBER, M. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The leading corrections to finite-size scaling predictions for eigenvalues of the quantum Hamiltonian limit of the critical four-state Potts model are calculated analytically from the Bethe ansatz equations for equivalent eigenstates of a modified XXZ chain. Scaled gaps are found to behave for large chain length L as x +d/ln L + o((ln L)/sup /minus/1/), where x is the anomalous dimension of the associated primary scaling operator. For the gaps associated with the energy and magnetic operators, the values of the amplitudes d are in agreement with predictions of conformal invariance. The implications of these analytical results for the extrapolation of finite lattice data are discussed. Accurate estimates of x and d are found to be extremely difficult even with data available from large lattices, L approx.500.
ISSN:0022-4715
1572-9613
DOI:10.1007/bf01019724