Noise-sustained structure, intermittency and the Ginzburg-Landau equation
The time-dependent generalized Ginzburg--Landau equation is an equation that is related to many physical systems. Solutions of this equation in the presence of low-level external noise are studied. Numerical solutions of this equation in the stationary frame of refernce and with nonzero group veloci...
Gespeichert in:
Veröffentlicht in: | J. Stat. Phys.; (United States) 1985-08, Vol.40 (3-4), p.371-395 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time-dependent generalized Ginzburg--Landau equation is an equation that is related to many physical systems. Solutions of this equation in the presence of low-level external noise are studied. Numerical solutions of this equation in the stationary frame of refernce and with nonzero group velocity that is greater than a critical velocity exhibit a selective spatial amplification of noise resulting in spatially growing waves. These waves in turn result in the formation of a dynamic structure. It is found that the microscopic noise plays an importuant role in the macroscopic dynamics of the system. For certain parameter values the system exhibits intermittent turbulent behavior in which the random nature of the external noise plays a crucial role. A mechanism which may be responsible for the intermittent turbulence occurring in some fluid systems is suggested. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/bf01017180 |