A soluble random-matrix model for relaxation in quantum systems
We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincare recurrence time, the survival probability of still finding the system...
Gespeichert in:
Veröffentlicht in: | J. Stat. Phys.; (United States) 1988-04, Vol.51 (1-2), p.77-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincare recurrence time, the survival probability of still finding the system at time t in the same state in which it was prepared at t = 0 is exactly calculated. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/BF01015321 |