A soluble random-matrix model for relaxation in quantum systems

We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincare recurrence time, the survival probability of still finding the system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1988-04, Vol.51 (1-2), p.77-94
Hauptverfasser: MELLO, P. A, PEREYRA, P, KUMAR, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincare recurrence time, the survival probability of still finding the system at time t in the same state in which it was prepared at t = 0 is exactly calculated.
ISSN:0022-4715
1572-9613
DOI:10.1007/BF01015321