Changes in growth, appetite, food conversion efficiency and body composition in mice selected for high post-weaning weight gain on restricted feeding
This study aimed to test the hypothesis that if animals were fed the same amount over the same time period, selection of the fastest growers would result in a change in the partitioning of metabolisable energy toward more protein and less fat deposition. Two mouse lines (S1 and S2) were selected for...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 1980-01, Vol.57 (2), p.49-56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to test the hypothesis that if animals were fed the same amount over the same time period, selection of the fastest growers would result in a change in the partitioning of metabolisable energy toward more protein and less fat deposition. Two mouse lines (S1 and S2) were selected for high 5 to 9 week weight gain corrected to mean 5 week weight. Appetite variation between mice was eliminated by feeding a fixed amount to each mouse daily. After 6 generations of selection, the lines were compared with an unselected control (C) on restricted and ad libitum levels of feeding for growth rate, appetite, food conversion efficiency and chemical body composition.Realised heritabilities of 5 to 9 week gain were 0.36+ 0.05 and 0.19±0.04 for S1 and S2 respectively. Nine week weights were increased by an average of 13% on both feeding levels. Most of this increase, particularly in S2, occurred before 5 weeks and was therefore outside the period of measurement used in selection. On ad libitum feeding, selection increased food intake per unit time by 6% but there was no increase per unit body weight. Food conversion efficiency (gain/food) increased by 12%. Compared with controls at 9 weeks, 3% more of the body weights of selected mice was fat and 1% less was protein. These differences were reduced but were still in the same direction when comparisons were made at the same body weight. Thus the expected change in energy partitioning toward greater protein and less fat deposition in the S lines did not occur.It was concluded that the increased growth and energy retention in the S lines was brought about by a reduction in maintenance requirement. To achieve the desired change in energy partitioning using a similar selection scheme, higher levels of dietary protein should be fed, and some measure of protein deposition rather than growth rate used as the selection criterion. |
---|---|
ISSN: | 0040-5752 1432-2242 |
DOI: | 10.1007/BF00745028 |