Reduced cardiotoxicity and increased cytotoxicity in a novel anthracycline analogue, 4'-amino-3'-hydroxy-doxorubicin

The acute and chronic cardiotoxicity and cytotoxicity of the novel doxorubicin (DXR) derivative 4'-amino-3'-hydroxy-DXR were compared with those of 4'-deoxy-DXR and DXR. In the acute cardiotoxicity study, the ECG and hemodynamic changes recorded in anesthetized rats that had been trea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer chemotherapy and pharmacology 1992-07, Vol.29 (4), p.261-265
Hauptverfasser: DANESI, R, BERNARDINI, N, AGEN, C, COSTA, M, ZACCARO, L, PIERACCI, D, MALVALDI, G, DEL TACCA, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The acute and chronic cardiotoxicity and cytotoxicity of the novel doxorubicin (DXR) derivative 4'-amino-3'-hydroxy-DXR were compared with those of 4'-deoxy-DXR and DXR. In the acute cardiotoxicity study, the ECG and hemodynamic changes recorded in anesthetized rats that had been treated i.v. with 10 mg/kg 4'-amino-3'-hydroxy-DXR or 8.6 mg/kg 4'-deoxy-DXR were significantly less severe than those caused by 13 mg/kg DXR. In the chronic cardiotoxicity study, rats received 3 weekly i.v. injections of 3 mg/kg DXR, 3 mg/kg 4'-amino-3'-hydroxy-DXR, or 2 mg/kg 4'-deoxy-DXR during the first 14 days of the study and were observed for an additional 35-day period. DXR induced severe cardiomyopathy that was characterized by ECG changes in vivo (S alpha T-segment widening and T-wave flattening) and by impairment of the contractile responses (Fmax, +/- dF/dtmax) to adrenaline of hearts isolated from treated animals. 4'-Deoxy-DXR caused a progressive enlargement of the S alpha T segment in vivo and a significant impairment of the -dF/dtmax value in vitro, which were less severe than those produced by DXR. The least cardiotoxic drug was 4'-amino-3'-hydroxy-DXR, which induced minor ECG changes without causing significant alterations in the contractile responses of isolated hearts to adrenaline. On the basis of the drug concentration required to inhibit 50% of the colony formation (IC50) of cell lines in vitro, 4'-amino-3'-hydroxy-DXR was less active than 4'-deoxy-DXR but at least twice as active as DXR against human cancer and murine transformed cell lines. These data indicate that 4'-amino-3'-hydroxy-DXR is significantly less cardiotoxic and more cytotoxic than DXR.
ISSN:0344-5704
1432-0843
DOI:10.1007/BF00685942