Minimal supports in quantum logics and Hilbert space
It is shown that if a fully atomic, complete orthomodular lattice satisfies a minimal support condition (m.s.c.), then it satisfies Piron's axioms, and is thereby shown to be the projection lattice of a generalized Hilbert space. It is shown, conversely, that m.s.c. holds in Hilbert space subsp...
Gespeichert in:
Veröffentlicht in: | Int. J. Theor. Phys.; (United States) 1987-05, Vol.26 (5), p.435-450 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that if a fully atomic, complete orthomodular lattice satisfies a minimal support condition (m.s.c.), then it satisfies Piron's axioms, and is thereby shown to be the projection lattice of a generalized Hilbert space. It is shown, conversely, that m.s.c. holds in Hilbert space subspace lattices. The physical justification for m.s.c. is provided in the context of a property lattice L(A,..sigma..) for a realistic entity (A, ..sigma..) in the sense of Foulis-Piron-Randall. This content provides a clear focus on key issues in the debate over the appropriateness of requiring quantum logics to be represented over Hilbert spaces. |
---|---|
ISSN: | 0020-7748 1572-9575 |
DOI: | 10.1007/BF00668776 |