Improved detection and quantification of the (immuno) peroxidase product using reflection contrast microscopy

Reflection contrast microscopy (RCM) is a sensitive tool to detect minor amounts of precipitated diaminobenzidine (DABox) in immunoperoxidase stained specimens. One of the main issues in immunocytochemistry is the ongoing need for more sensitive and quantitative techniques. Therefore we applied RCM,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Histochemistry 1989-01, Vol.92 (2), p.153-160
Hauptverfasser: CORNELESE-TEN VELDE, I, WIEGANT, J, TANKE, H. J, PLOEM, J. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reflection contrast microscopy (RCM) is a sensitive tool to detect minor amounts of precipitated diaminobenzidine (DABox) in immunoperoxidase stained specimens. One of the main issues in immunocytochemistry is the ongoing need for more sensitive and quantitative techniques. Therefore we applied RCM, using a new simple model system, to methods previously described for increased sensitivity in immunocytochemistry with bright field microscopy. Addition of imidazole was found the most sensitive method and addition of Nickel and Cobalt ions gave the most enhanced colour intensity. Variation of the enzyme reaction parameters yielded a continuous increase in reflection with time. This was then discussed in view of other model studies of peroxidase kinetics. A quantitative relationship between the amount of peroxidase and the reflection of DABox was observed, indicating that quantitative immunoperoxidase studies with RCM are feasible. In situ hybridization (ISH) was then used as a useful biological model for RCM to test the optimal conditions for DAB staining found in the model system (high concentrations of DAB and peroxidase and 2 h incubation time). There was no background staining in the model system, also after prolonged incubation time. The ISH experiments showed that the contrast (ratio) between specific signal and chromosome background did not increase in time, whereas only the use of high avPO concentrations yielded the highest contrast.
ISSN:0301-5564
1432-119X
DOI:10.1007/bf00490236