THE RESPONSE OF DROSOPHILA IMAGINAL DISK CELL-LINES TO ECDYSTEROIDS

We have investigated the action of the moulting hormone 20-hydroxy ecdysone (20-HOE) on our leg and wing imaginal disc cell lines. At the morphological level, cells stop dividing and there is some cell death. The remaining cells elongate and aggregate, often producing long processes which form conne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Roux's Archives of Developmental Biology 1992-12, Vol.202 (1), p.23-35
Hauptverfasser: PEEL, DJ, MILNER, MJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the action of the moulting hormone 20-hydroxy ecdysone (20-HOE) on our leg and wing imaginal disc cell lines. At the morphological level, cells stop dividing and there is some cell death. The remaining cells elongate and aggregate, often producing long processes which form connections between different aggregates. 20-HOE acts within the first one or two days of a passage, at an optimum concentration of 10 ng/ml, this being about 1/100 of the optimum for ecdysone. One cloned wing cell line, C9, has been found to be relatively insensitive to the action of 20-HOE. We have been able to select for resistance to 20-HOE by growing cells in gradually increasing concentrations of hormone followed by passages in hormone-free medium. This has enabled us to isolate a wing cell line C1.8R from its parent cloned line C1.8+. This shows no response to 20-HOE, and cell growth continues even at hormone concentrations as high as 150 ng/ml. We have measured chitin synthesis by the incorporation of radioactive glucosamine into a cell fraction resistant to extensive alkali hydrolysis. The residue was incubated with chitinase, which resulted in a 50% reduction in labelled product. Treatment with 10 ng/ml of 20-HOE dramatically increased chitin synthesis in line C1.8+, but had no effect in the line C1.8R, selected for resistance to hormone.
ISSN:0930-035X
1432-041X
DOI:10.1007/BF00364594