Experimentally induced colon cancer metastases in rat liver increase the proliferation rate and capacity for purine catabolism in liver cells

Metastases in rat liver were generated experimentally by intraportal injection of colon cancer cells to investigate the effects of cancerous growth on the metabolism of surrounding liver tissue. Maximum activities (capacity) of glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, lacta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Histochemistry 1993-07, Vol.100 (1), p.41-51
Hauptverfasser: JONGES, G. N, VOGELS, I. M. C, BOSCH, K. S, DINGEMANS, K. P, VAN NOORDEN, C. J. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metastases in rat liver were generated experimentally by intraportal injection of colon cancer cells to investigate the effects of cancerous growth on the metabolism of surrounding liver tissue. Maximum activities (capacity) of glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, lactate dehydrogenase, succinate dehydrogenase, alkaline phosphatase, 5'-nucleotidase, xanthine oxidoreductase, purine nucleoside phosphorylase and adenosine triphosphatase have been determined. Two types of metastases were found, a small type surrounded by stroma and a larger type in direct contact with hepatocytes. Both types affected the adjacent tissue in a similar way suggesting that the interactions were not mediated by stroma. High capacity of the degradation pathway of extracellular purines released from dead cells of either tumours or host tissue was found in stroma and sinusoidal cells. Metastases induced both an increase in the number of Kupffer cells and proliferation of hepatocytes. The distribution pattern in the liver lobulus of most enzymes investigated did not change distinctly. However, activity of alkaline phosphatase, succinate dehydrogenase and phosphogluconate dehydrogenase was increased in hepatocytes directly surrounding metastases. These data imply that the overall metabolic zonation in liver lobuli is not dramatically disturbed by the presence of cancer cells despite the fact that various metabolic processes in liver cells are affected.
ISSN:0301-5564
1432-119X
DOI:10.1007/BF00268877