A VLSI Image Processing Architecture Dedicated to Real-Time Quality Control Analysis in an Industrial Plant
In this paper, we present a VLSI architecture for real-time image processing in quality control industrial applications: automation of the visual inspection phase of mechanical parts treated by the Fluorescent Magnetic Particle Inspection method for structural-defect detection. The VLSI architecture...
Gespeichert in:
Veröffentlicht in: | Real-time imaging 1996-12, Vol.2 (6), p.361-371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a VLSI architecture for real-time image processing in quality control industrial applications: automation of the visual inspection phase of mechanical parts treated by the Fluorescent Magnetic Particle Inspection method for structural-defect detection. The VLSI architecture implements a highly constrained neural network tailored for this specific application: the multi-layer perceptron with strictly local connections. The learning of the weights is performed off line by using the adaptive simulated-annealing algorithm. The neural network has been trained on real plant data: recognition results of the training and classification tasks compare favorably with those obtained by expert human operators.
The VLSI architecture receives as input the image (taken on-line on the plant) of a mechanical part and it will find out if at least one structural surface defect is present. The VLSI architecture was optimized, through a set of transformations on the high-level VHDL specifications of the neural network algorithm, to reach real-time operating conditions. Following the proposed approach and the designed architecture, we designed and successfully tested a custom VLSI chip for the real-time implementation of the recognition task. |
---|---|
ISSN: | 1077-2014 1096-116X |
DOI: | 10.1006/rtim.1996.0037 |