A VLSI Image Processing Architecture Dedicated to Real-Time Quality Control Analysis in an Industrial Plant

In this paper, we present a VLSI architecture for real-time image processing in quality control industrial applications: automation of the visual inspection phase of mechanical parts treated by the Fluorescent Magnetic Particle Inspection method for structural-defect detection. The VLSI architecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real-time imaging 1996-12, Vol.2 (6), p.361-371
Hauptverfasser: Valle, Maurizio, Raffo, Luigi, Caviglia, Daniele D., Bisio, Giacomo M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a VLSI architecture for real-time image processing in quality control industrial applications: automation of the visual inspection phase of mechanical parts treated by the Fluorescent Magnetic Particle Inspection method for structural-defect detection. The VLSI architecture implements a highly constrained neural network tailored for this specific application: the multi-layer perceptron with strictly local connections. The learning of the weights is performed off line by using the adaptive simulated-annealing algorithm. The neural network has been trained on real plant data: recognition results of the training and classification tasks compare favorably with those obtained by expert human operators. The VLSI architecture receives as input the image (taken on-line on the plant) of a mechanical part and it will find out if at least one structural surface defect is present. The VLSI architecture was optimized, through a set of transformations on the high-level VHDL specifications of the neural network algorithm, to reach real-time operating conditions. Following the proposed approach and the designed architecture, we designed and successfully tested a custom VLSI chip for the real-time implementation of the recognition task.
ISSN:1077-2014
1096-116X
DOI:10.1006/rtim.1996.0037