RADIATION DAMPING IN PLATES, INDUCED BY POROUS MEDIA
Experimental data on the damping properties of a simply supported aluminium plate mounted in a rigid baffle, and separated by an air gap from a slab of open-celled plastic foam, are presented along with numerical results from two independent analyses. The first is a coupled modal analysis incorporat...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 1999-03, Vol.221 (1), p.143-167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental data on the damping properties of a simply supported aluminium plate mounted in a rigid baffle, and separated by an air gap from a slab of open-celled plastic foam, are presented along with numerical results from two independent analyses. The first is a coupled modal analysis incorporating a finite-thickness layer of absorbent and a baffle of finite dimensions. The second is a plate radiation model with an infinite baffle and an absorbent of semi-infinite extent. Numerical predictions from the two models and the experimental data are generally in reasonable agreement, and the roles of both the plate/absorbent spacing and the mode of vibration of the plate are highlighted. It is shown, for example, that the loss factor of the plate is very strongly dependent on the air space and that the damping varies quite markedly between different plate modes. The damping is also strongly dependent on the steady flow resistivity of the porous medium. Predictions of the power dissipation per unit volume in the absorbent (with no air gap) and of the intensity distribution over the plate surface (with an air gap) illustrate some interesting features of the behaviour of the system. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1006/jsvi.1998.1987 |