On the Number of Integers Representable as Sums of Unit Fractions, III

Let N( n) be the set of all integers that can be expressed as a sum of reciprocals of distinct integers ⩽ n. Then we prove that for sufficiently large n, logn+γ− π 2 3 +o(1) (log 2n) 2 logn ⩽∣N(n)∣ , which improves the lower bound given by Croot.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2002-10, Vol.96 (2), p.351-372
1. Verfasser: Yokota, Hisashi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let N( n) be the set of all integers that can be expressed as a sum of reciprocals of distinct integers ⩽ n. Then we prove that for sufficiently large n, logn+γ− π 2 3 +o(1) (log 2n) 2 logn ⩽∣N(n)∣ , which improves the lower bound given by Croot.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.2002.2797