The ABC Conjecture Implies Vojta's Height Inequality for Curves

Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2002-08, Vol.95 (2), p.289-302
1. Verfasser: Van Frankenhuysen, Machiel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue 2
container_start_page 289
container_title Journal of number theory
container_volume 95
creator Van Frankenhuysen, Machiel
description Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyǐ function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two.
doi_str_mv 10.1006/jnth.2001.2769
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jnth_2001_2769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X01927696</els_id><sourcerecordid>S0022314X01927696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-37fcd9e44d22879e5bc878ca1b1b9b46de2461ae9c81f1465e4b5049e751bd503</originalsourceid><addsrcrecordid>eNp1z7FOwzAQgGELgUQprMzemBJ8ju3EEyoR0EiVWApisxLnQh21SbHTSn17EpWV6Zb7T_cRcg8sBsbUY9sNm5gzBjFPlb4gM2BaRaBkdklmjHEeJSC-rslNCO24BTKVM_K03iBdPOc077sW7XDwSIvdfusw0M--HcqHQJfovjcDLTr8OZRbN5xo03uaH_wRwy25asptwLu_OScfry_rfBmt3t-KfLGKLIdkiJK0sbVGIWrOs1SjrGyWZraECipdCVUjFwpK1DaDBoSSKCrJhMZUQlVLlsxJfL5rfR-Cx8bsvduV_mSAmYlvJr6Z-Gbij0F2DnD86ujQm2AddhZr50enqXv3X_oLsJNgqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The ABC Conjecture Implies Vojta's Height Inequality for Curves</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Van Frankenhuysen, Machiel</creator><creatorcontrib>Van Frankenhuysen, Machiel</creatorcontrib><description>Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyǐ function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1006/jnth.2001.2769</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ABC conjecture ; Diophantine approximation ; effective Mordell ; Mordell's conjecture ; Roth's theorem ; the error term in the ABC conjecture ; type of an algebraic number ; Vojta's height inequality</subject><ispartof>Journal of number theory, 2002-08, Vol.95 (2), p.289-302</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-37fcd9e44d22879e5bc878ca1b1b9b46de2461ae9c81f1465e4b5049e751bd503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jnth.2001.2769$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Van Frankenhuysen, Machiel</creatorcontrib><title>The ABC Conjecture Implies Vojta's Height Inequality for Curves</title><title>Journal of number theory</title><description>Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyǐ function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two.</description><subject>ABC conjecture</subject><subject>Diophantine approximation</subject><subject>effective Mordell</subject><subject>Mordell's conjecture</subject><subject>Roth's theorem</subject><subject>the error term in the ABC conjecture</subject><subject>type of an algebraic number</subject><subject>Vojta's height inequality</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1z7FOwzAQgGELgUQprMzemBJ8ju3EEyoR0EiVWApisxLnQh21SbHTSn17EpWV6Zb7T_cRcg8sBsbUY9sNm5gzBjFPlb4gM2BaRaBkdklmjHEeJSC-rslNCO24BTKVM_K03iBdPOc077sW7XDwSIvdfusw0M--HcqHQJfovjcDLTr8OZRbN5xo03uaH_wRwy25asptwLu_OScfry_rfBmt3t-KfLGKLIdkiJK0sbVGIWrOs1SjrGyWZraECipdCVUjFwpK1DaDBoSSKCrJhMZUQlVLlsxJfL5rfR-Cx8bsvduV_mSAmYlvJr6Z-Gbij0F2DnD86ujQm2AddhZr50enqXv3X_oLsJNgqQ</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Van Frankenhuysen, Machiel</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200208</creationdate><title>The ABC Conjecture Implies Vojta's Height Inequality for Curves</title><author>Van Frankenhuysen, Machiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-37fcd9e44d22879e5bc878ca1b1b9b46de2461ae9c81f1465e4b5049e751bd503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>ABC conjecture</topic><topic>Diophantine approximation</topic><topic>effective Mordell</topic><topic>Mordell's conjecture</topic><topic>Roth's theorem</topic><topic>the error term in the ABC conjecture</topic><topic>type of an algebraic number</topic><topic>Vojta's height inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Frankenhuysen, Machiel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Frankenhuysen, Machiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ABC Conjecture Implies Vojta's Height Inequality for Curves</atitle><jtitle>Journal of number theory</jtitle><date>2002-08</date><risdate>2002</risdate><volume>95</volume><issue>2</issue><spage>289</spage><epage>302</epage><pages>289-302</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyǐ function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jnth.2001.2769</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-314X
ispartof Journal of number theory, 2002-08, Vol.95 (2), p.289-302
issn 0022-314X
1096-1658
language eng
recordid cdi_crossref_primary_10_1006_jnth_2001_2769
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects ABC conjecture
Diophantine approximation
effective Mordell
Mordell's conjecture
Roth's theorem
the error term in the ABC conjecture
type of an algebraic number
Vojta's height inequality
title The ABC Conjecture Implies Vojta's Height Inequality for Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ABC%20Conjecture%20Implies%20Vojta's%20Height%20Inequality%20for%20Curves&rft.jtitle=Journal%20of%20number%20theory&rft.au=Van%20Frankenhuysen,%20Machiel&rft.date=2002-08&rft.volume=95&rft.issue=2&rft.spage=289&rft.epage=302&rft.pages=289-302&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1006/jnth.2001.2769&rft_dat=%3Celsevier_cross%3ES0022314X01927696%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X01927696&rfr_iscdi=true