The ABC Conjecture Implies Vojta's Height Inequality for Curves

Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2002-08, Vol.95 (2), p.289-302
1. Verfasser: Van Frankenhuysen, Machiel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyǐ function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.2001.2769