The ABC Conjecture Implies Vojta's Height Inequality for Curves
Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a B...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2002-08, Vol.95 (2), p.289-302 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following Elkies (Internat. Math. Res. Notices7 (1991) 99–109) and Bombieri (Roth's theorem and the abc-conjecture, preprint, ETH Zürich, 1994), we show that the ABC conjecture implies the one-dimensional case of Vojta's height inequality. The main geometric tool is the construction of a Belyǐ function. We take care to make explicit the effectivity of the result: we show that an effective version of the ABC conjecture would imply an effective version of Roth's theorem, as well as giving an (in principle) explicit bound on the height of rational points on an algebraic curve of genus at least two. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.2001.2769 |