Level Zero Types and Hecke Algebras for Local Central Simple Algebras

Let D be a central division algebra and A×=GLm(D) the unit group of a central simple algebra over a p-adic field F. The purpose of this paper is to give types (in the sense of Bushnell and Kutzko) for all level zero Bernstein components of A× and to establish that the Hecke algebras associated to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2001-11, Vol.91 (1), p.92-125
Hauptverfasser: Grabitz, Martin, Silberger, Allan J, Zink, Ernst-Wilhelm
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let D be a central division algebra and A×=GLm(D) the unit group of a central simple algebra over a p-adic field F. The purpose of this paper is to give types (in the sense of Bushnell and Kutzko) for all level zero Bernstein components of A× and to establish that the Hecke algebras associated to these types are isomorphic to tensor products of Iwahori Hecke algebras. The types which we consider are lifted from cuspidal representations τ of M(kD), where M is a standard Levi subgroup of GLm and kD is the residual field of D. Two types are equivalent if and only if the corresponding pairs (M(kD), τ) are conjugate with respect to A×. The results are basically the same as in the split case A×=GLn(F) due to Bushnell and Kutzko. In the non-split case there are more equivalent types and the proofs are technically more complicated.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.2001.2684