A New Proof of a Conjecture of Antoniadis
We give a new and elementary proof that the equation x3−1=31y2 has only the integral solutions (x, y)=(1, 0), (5, 2), (5, −2).
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2000-08, Vol.83 (2), p.185-193 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Journal of number theory |
container_volume | 83 |
creator | Cao, Zhenfu Mu, Shanzhi Dong, Xiaolei |
description | We give a new and elementary proof that the equation x3−1=31y2 has only the integral solutions (x, y)=(1, 0), (5, 2), (5, −2). |
doi_str_mv | 10.1006/jnth.1999.2489 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jnth_1999_2489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X99924897</els_id><sourcerecordid>S0022314X99924897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-76c48fa1de51186b14a934a4750a577b6ab1d94f1b4673d370bb5b90b420b1bc3</originalsourceid><addsrcrecordid>eNp1jztLxUAQhRdRMF5trdNaJM4k-8iW4eILLmqhYLfsK7hBs7IbFf-9CddWGDhM8R3OR8g5Qo0A_HKc5tcapZR1Qzt5QAoEySvkrDskBUDTVC3Sl2NykvMIgMgEK8hFX9777_IxxTiUy-lyG6fR2_kz-fXvpzlOQbuQT8nRoN-yP_vLDXm-vnra3la7h5u7bb-rbNPhXAluaTdodJ4hdtwg1bKlmgoGmglhuDboJB3QUC5a1wowhhkJhjZg0Nh2Q-p9r00x5-QH9ZHCu04_CkGtomoVVauoWkUXoNsDfln1FXxS2QY_We9CWkSUi-E_9BcQV1hZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Proof of a Conjecture of Antoniadis</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cao, Zhenfu ; Mu, Shanzhi ; Dong, Xiaolei</creator><creatorcontrib>Cao, Zhenfu ; Mu, Shanzhi ; Dong, Xiaolei</creatorcontrib><description>We give a new and elementary proof that the equation x3−1=31y2 has only the integral solutions (x, y)=(1, 0), (5, 2), (5, −2).</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1006/jnth.1999.2489</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cubic Diophantine equation ; Legendre–Jacobi symbol ; recurrence sequence</subject><ispartof>Journal of number theory, 2000-08, Vol.83 (2), p.185-193</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-76c48fa1de51186b14a934a4750a577b6ab1d94f1b4673d370bb5b90b420b1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jnth.1999.2489$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Cao, Zhenfu</creatorcontrib><creatorcontrib>Mu, Shanzhi</creatorcontrib><creatorcontrib>Dong, Xiaolei</creatorcontrib><title>A New Proof of a Conjecture of Antoniadis</title><title>Journal of number theory</title><description>We give a new and elementary proof that the equation x3−1=31y2 has only the integral solutions (x, y)=(1, 0), (5, 2), (5, −2).</description><subject>cubic Diophantine equation</subject><subject>Legendre–Jacobi symbol</subject><subject>recurrence sequence</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1jztLxUAQhRdRMF5trdNaJM4k-8iW4eILLmqhYLfsK7hBs7IbFf-9CddWGDhM8R3OR8g5Qo0A_HKc5tcapZR1Qzt5QAoEySvkrDskBUDTVC3Sl2NykvMIgMgEK8hFX9777_IxxTiUy-lyG6fR2_kz-fXvpzlOQbuQT8nRoN-yP_vLDXm-vnra3la7h5u7bb-rbNPhXAluaTdodJ4hdtwg1bKlmgoGmglhuDboJB3QUC5a1wowhhkJhjZg0Nh2Q-p9r00x5-QH9ZHCu04_CkGtomoVVauoWkUXoNsDfln1FXxS2QY_We9CWkSUi-E_9BcQV1hZ</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Cao, Zhenfu</creator><creator>Mu, Shanzhi</creator><creator>Dong, Xiaolei</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200008</creationdate><title>A New Proof of a Conjecture of Antoniadis</title><author>Cao, Zhenfu ; Mu, Shanzhi ; Dong, Xiaolei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-76c48fa1de51186b14a934a4750a577b6ab1d94f1b4673d370bb5b90b420b1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>cubic Diophantine equation</topic><topic>Legendre–Jacobi symbol</topic><topic>recurrence sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zhenfu</creatorcontrib><creatorcontrib>Mu, Shanzhi</creatorcontrib><creatorcontrib>Dong, Xiaolei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zhenfu</au><au>Mu, Shanzhi</au><au>Dong, Xiaolei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Proof of a Conjecture of Antoniadis</atitle><jtitle>Journal of number theory</jtitle><date>2000-08</date><risdate>2000</risdate><volume>83</volume><issue>2</issue><spage>185</spage><epage>193</epage><pages>185-193</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>We give a new and elementary proof that the equation x3−1=31y2 has only the integral solutions (x, y)=(1, 0), (5, 2), (5, −2).</abstract><pub>Elsevier Inc</pub><doi>10.1006/jnth.1999.2489</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-314X |
ispartof | Journal of number theory, 2000-08, Vol.83 (2), p.185-193 |
issn | 0022-314X 1096-1658 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jnth_1999_2489 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cubic Diophantine equation Legendre–Jacobi symbol recurrence sequence |
title | A New Proof of a Conjecture of Antoniadis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Proof%20of%20a%20Conjecture%20of%20Antoniadis&rft.jtitle=Journal%20of%20number%20theory&rft.au=Cao,%20Zhenfu&rft.date=2000-08&rft.volume=83&rft.issue=2&rft.spage=185&rft.epage=193&rft.pages=185-193&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1006/jnth.1999.2489&rft_dat=%3Celsevier_cross%3ES0022314X99924897%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X99924897&rfr_iscdi=true |