A Lower Bound in the abc Conjecture
We show that there exists an infinite sequence of sums P:a+b=c of rational integers with large height compared to the radical: h(P)⩾r(P)+4Klh(P)/logh(P) with Kl=2l/22π/e>1.517 for l=0.5990. This improves the result of Stewart and Tijdeman [9]. The value of l comes from an asymptotic bound for the...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2000-05, Vol.82 (1), p.91-95 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there exists an infinite sequence of sums P:a+b=c of rational integers with large height compared to the radical: h(P)⩾r(P)+4Klh(P)/logh(P) with Kl=2l/22π/e>1.517 for l=0.5990. This improves the result of Stewart and Tijdeman [9]. The value of l comes from an asymptotic bound for the packing density of spheres. We formulate our result such that improved knowledge of l immediately improves the value of Kl. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.1999.2484 |