A Lower Bound in the abc Conjecture

We show that there exists an infinite sequence of sums P:a+b=c of rational integers with large height compared to the radical: h(P)⩾r(P)+4Klh(P)/logh(P) with Kl=2l/22π/e>1.517 for l=0.5990. This improves the result of Stewart and Tijdeman [9]. The value of l comes from an asymptotic bound for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2000-05, Vol.82 (1), p.91-95
1. Verfasser: Van Frankenhuysen, Machiel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that there exists an infinite sequence of sums P:a+b=c of rational integers with large height compared to the radical: h(P)⩾r(P)+4Klh(P)/logh(P) with Kl=2l/22π/e>1.517 for l=0.5990. This improves the result of Stewart and Tijdeman [9]. The value of l comes from an asymptotic bound for the packing density of spheres. We formulate our result such that improved knowledge of l immediately improves the value of Kl.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.1999.2484