Continuous Functions on Discrete Valuation Rings

LetRbe a complete discrete valuation ring with finite residue field, letKbe its quotient field. We construct polynomial functionsϕ(n,a)(n=0,1,…) such that any continuous functionffromRintoKhas the following expansionf(a)=∑n=0∞anϕ(n,a)where the sequence {an}⊂Kis uniquely determined byfand satisfies t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 1999-03, Vol.75 (1), p.23-33
1. Verfasser: Tateyama, Koichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LetRbe a complete discrete valuation ring with finite residue field, letKbe its quotient field. We construct polynomial functionsϕ(n,a)(n=0,1,…) such that any continuous functionffromRintoKhas the following expansionf(a)=∑n=0∞anϕ(n,a)where the sequence {an}⊂Kis uniquely determined byfand satisfies thatlimn→∞an=0. WhenK=Qp, if we replaceϕ(n,=a) by the binomial coefficienta(a−1)…(a−n+1)/n! we have Mahler's expansion theorem.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.1998.2333