The Congruencex1x2≡x3x4(modp), the Equationx1x2≡x3x4, and Mean Values of Character Sums
We obtain the asymptotic formulae ∣B∩V∣=(∣B∣/p)+O(√∣B∣log2p) for the number of solutions of the congruencex1x2≡x3x4(modp) in a box B of arbitrary size and position, andN(B)=(12/π2)B2logB+CB2+O(B19/13log7/13B), withCgiven explicitly, for the number of solutions of the diophantine equationx1x2≡x3x4wit...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 1996-08, Vol.59 (2), p.398-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain the asymptotic formulae ∣B∩V∣=(∣B∣/p)+O(√∣B∣log2p) for the number of solutions of the congruencex1x2≡x3x4(modp) in a box B of arbitrary size and position, andN(B)=(12/π2)B2logB+CB2+O(B19/13log7/13B), withCgiven explicitly, for the number of solutions of the diophantine equationx1x2≡x3x4with 1≤xi≤B. We also obtain the upper bound for fourth order character sum moments, 1/(p−1) ∑χ≠χo∣ ∑a+Bx=a+1χ(x)∣4⪡B2log2p. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.1996.0105 |