The Congruencex1x2≡x3x4(modp), the Equationx1x2≡x3x4, and Mean Values of Character Sums

We obtain the asymptotic formulae ∣B∩V∣=(∣B∣/p)+O(√∣B∣log2p) for the number of solutions of the congruencex1x2≡x3x4(modp) in a box B of arbitrary size and position, andN(B)=(12/π2)B2logB+CB2+O(B19/13log7/13B), withCgiven explicitly, for the number of solutions of the diophantine equationx1x2≡x3x4wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 1996-08, Vol.59 (2), p.398-413
Hauptverfasser: Ayyad, Anwar, Cochrane, Todd, Zheng, Zhiyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain the asymptotic formulae ∣B∩V∣=(∣B∣/p)+O(√∣B∣log2p) for the number of solutions of the congruencex1x2≡x3x4(modp) in a box B of arbitrary size and position, andN(B)=(12/π2)B2logB+CB2+O(B19/13log7/13B), withCgiven explicitly, for the number of solutions of the diophantine equationx1x2≡x3x4with 1≤xi≤B. We also obtain the upper bound for fourth order character sum moments, 1/(p−1) ∑χ≠χo∣ ∑a+Bx=a+1χ(x)∣4⪡B2log2p.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.1996.0105