The Additive Completion of Kth-Powers

Let k ≥ 2 be an integer. For fixed N, we consider a set A N of non-negative integers such that for all integer n ≤ N, n can be written as n = a + b k , a ∈ A N , b a positive integer. We are interested in a lower bound for the number of elements of A N . Improving a result of R. Balasubramanian ( J....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 1993-07, Vol.44 (3), p.237-243
1. Verfasser: Cilleruelo, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k ≥ 2 be an integer. For fixed N, we consider a set A N of non-negative integers such that for all integer n ≤ N, n can be written as n = a + b k , a ∈ A N , b a positive integer. We are interested in a lower bound for the number of elements of A N . Improving a result of R. Balasubramanian ( J. Number Theory 29, 1988, 10-12), we prove the following theorem: [formula].
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.1993.1049