The Additive Completion of Kth-Powers
Let k ≥ 2 be an integer. For fixed N, we consider a set A N of non-negative integers such that for all integer n ≤ N, n can be written as n = a + b k , a ∈ A N , b a positive integer. We are interested in a lower bound for the number of elements of A N . Improving a result of R. Balasubramanian ( J....
Gespeichert in:
Veröffentlicht in: | Journal of number theory 1993-07, Vol.44 (3), p.237-243 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k ≥ 2 be an integer. For fixed
N, we consider a set
A
N
of non-negative integers such that for all integer
n ≤
N,
n can be written as
n =
a +
b
k
,
a ∈
A
N
,
b a positive integer. We are interested in a lower bound for the number of elements of
A
N
. Improving a result of R. Balasubramanian (
J. Number Theory
29, 1988, 10-12), we prove the following theorem: [formula]. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.1993.1049 |