Kummer Congruences and Formal Groups

Let R be an integral domain and let f( X) = ( f 1( X), ..., f n ( X)) be an n-tuple of power series in n variables X = ( x 1, ..., x n ) such that df j ∈ ⊕ R[[ X]] dx i , f( X) ≡ 0 (mod deg 1), and J( f) = ((∂ f i /∂ x J (0)) is invertible over R. We can form the formal group F f ( X, Y) = f −1( f(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 1993, Vol.43 (1), p.31-42
1. Verfasser: Freije, M.N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be an integral domain and let f( X) = ( f 1( X), ..., f n ( X)) be an n-tuple of power series in n variables X = ( x 1, ..., x n ) such that df j ∈ ⊕ R[[ X]] dx i , f( X) ≡ 0 (mod deg 1), and J( f) = ((∂ f i /∂ x J (0)) is invertible over R. We can form the formal group F f ( X, Y) = f −1( f( X) + f( Y)). A priori, the coefficients of F f are in K, the quotient ring of R. T. Honda ( J. Math. Soc. Japan 22, 1970, 213-246) and M. Hazewinkel ("Formal Groups and Applications," Academic Press, Orlando, FL, 1978) give some sufficient conditions for F f ( X, Y) to be defined over R in the form of functional equations for the coefficients of the f i . This paper considers the conserve question: Given a commutative formal group F( X, Y) defined over a ring R, what necessary conditions must be satisfied by the coefficients of the logarithm of F( X, Y)? These results generalize the results of C. Snyder ( Rocky Mountain J. Math. 15, No. 1. 1985, 1-11) in the one dimensional case.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.1993.1004