Kummer Congruences and Formal Groups
Let R be an integral domain and let f( X) = ( f 1( X), ..., f n ( X)) be an n-tuple of power series in n variables X = ( x 1, ..., x n ) such that df j ∈ ⊕ R[[ X]] dx i , f( X) ≡ 0 (mod deg 1), and J( f) = ((∂ f i /∂ x J (0)) is invertible over R. We can form the formal group F f ( X, Y) = f −1( f(...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 1993, Vol.43 (1), p.31-42 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R be an integral domain and let
f(
X) = (
f
1(
X), ...,
f
n
(
X)) be an
n-tuple of power series in
n variables
X = (
x
1, ...,
x
n
) such that
df
j
∈ ⊕
R[[
X]]
dx
i
,
f(
X) ≡ 0 (mod deg 1), and
J(
f) = ((∂
f
i
/∂
x
J
(0)) is invertible over
R. We can form the formal group
F
f
(
X,
Y) =
f
−1(
f(
X) +
f(
Y)). A priori, the coefficients of
F
f
are in
K, the quotient ring of
R. T. Honda (
J. Math. Soc. Japan
22, 1970, 213-246) and M. Hazewinkel ("Formal Groups and Applications," Academic Press, Orlando, FL, 1978) give some sufficient conditions for
F
f
(
X,
Y) to be defined over
R in the form of functional equations for the coefficients of the
f
i
. This paper considers the conserve question: Given a commutative formal group
F(
X,
Y) defined over a ring
R, what necessary conditions must be satisfied by the coefficients of the logarithm of
F(
X,
Y)? These results generalize the results of C. Snyder (
Rocky Mountain J. Math.
15, No. 1. 1985, 1-11) in the one dimensional case. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.1993.1004 |