A Generalized φ-Divergence for Asymptotically Multivariate Normal Models
I. Csiszár's ( Magyar. Tud. Akad. Mat. Kutató Int. Közl 8 (1963), 85–108) ϕ-divergence, which was considered independently by M. S. Ali and S. D. Silvey ( J. R. Statist. Soc. Ser. B 28 (1966), 131–142) gives a goodness-of-fit statistic for multinomial distributed data. We define a generalized φ...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2002-11, Vol.83 (2), p.288-302 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I. Csiszár's (
Magyar. Tud. Akad. Mat. Kutató Int. Közl
8 (1963), 85–108)
ϕ-divergence, which was considered independently by M. S. Ali and S. D. Silvey (
J. R. Statist. Soc. Ser. B
28 (1966), 131–142) gives a goodness-of-fit statistic for multinomial distributed data. We define a generalized
φ-divergence that unifies the
ϕ-divergence approach with that of C. R. Rao and S. K. Mitra (“Generalized Inverse of Matrices and Its Applications,” Wiley, New York, 1971) and derive weak convergence to a
χ
2 distribution under the assumption of asymptotically multivariate normal distributed data vectors. As an example we discuss the application to the frequency count in Markov chains and thereby give a goodness-of-fit test for observations from dependent processes with finite memory. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1006/jmva.2001.2051 |