A Generalized φ-Divergence for Asymptotically Multivariate Normal Models

I. Csiszár's ( Magyar. Tud. Akad. Mat. Kutató Int. Közl 8 (1963), 85–108) ϕ-divergence, which was considered independently by M. S. Ali and S. D. Silvey ( J. R. Statist. Soc. Ser. B 28 (1966), 131–142) gives a goodness-of-fit statistic for multinomial distributed data. We define a generalized φ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2002-11, Vol.83 (2), p.288-302
1. Verfasser: Wegenkittl, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:I. Csiszár's ( Magyar. Tud. Akad. Mat. Kutató Int. Közl 8 (1963), 85–108) ϕ-divergence, which was considered independently by M. S. Ali and S. D. Silvey ( J. R. Statist. Soc. Ser. B 28 (1966), 131–142) gives a goodness-of-fit statistic for multinomial distributed data. We define a generalized φ-divergence that unifies the ϕ-divergence approach with that of C. R. Rao and S. K. Mitra (“Generalized Inverse of Matrices and Its Applications,” Wiley, New York, 1971) and derive weak convergence to a χ 2 distribution under the assumption of asymptotically multivariate normal distributed data vectors. As an example we discuss the application to the frequency count in Markov chains and thereby give a goodness-of-fit test for observations from dependent processes with finite memory.
ISSN:0047-259X
1095-7243
DOI:10.1006/jmva.2001.2051