Shortcomings of Generalized Affine Invariant Skewness Measures

This paper studies the asymptotic behavior of a generalization of Mardia's affine invariant measure of (sample) multivariate skewness. If the underlying distribution is elliptically symmetric, the limiting distribution is a finite sum of weighted independent ξ 2-variates, and the weights are de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 1999, Vol.71 (1), p.1-23
Hauptverfasser: Gutjahr, Steffen, Henze, Norbert, Folkers, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the asymptotic behavior of a generalization of Mardia's affine invariant measure of (sample) multivariate skewness. If the underlying distribution is elliptically symmetric, the limiting distribution is a finite sum of weighted independent ξ 2-variates, and the weights are determined by three moments of the radial distribution of the corresponding spherically symmetric generator. If the population distribution has positive generalized skewness a normal limiting distribution occurs. The results clarify the shortcomings of generalized skewness measures when used as statistics for testing for multivariate normality. Loosely speaking, normality will be falsely accepted for a short-tailed non-normal elliptically symmetric distribution, and it will be correctly rejected for a long-tailed non-normal elliptically symmetric distribution. The wrong diagnosis in the latter case, however, would be rejection due to positive skewness.
ISSN:0047-259X
1095-7243
DOI:10.1006/jmva.1999.1823